
Andrea Segalini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1448513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and Theoretical Studies to Improve Rock Fall Analysis and Protection Work Design. Rock Mechanics and Rock Engineering, 2004, 37, 369-389.	5.4	121
2	Debris flow risk mitigation by the means of rigid and flexible barriers – experimental tests and impact analysis. Natural Hazards and Earth System Sciences, 2012, 12, 1693-1699.	3.6	108
3	Debris flow impact estimation on a rigid barrier. Natural Hazards and Earth System Sciences, 2016, 16, 1691-1697.	3.6	68
4	Debris flow hazard mitigation: A simplified analytical model for the design of flexible barriers. Computers and Geotechnics, 2013, 54, 1-15.	4.7	66
5	Landslide time-of-failure forecast and alert threshold assessment: A generalized criterion. Engineering Geology, 2018, 245, 72-80.	6.3	63
6	Experimental tests for the application of an analytical model for flexible debris flow barrier design. Engineering Geology, 2015, 185, 33-42.	6.3	39
7	Stability analysis of historic underground quarries. Computers and Geotechnics, 2010, 37, 476-486.	4.7	28
8	Rock cliffs hazard analysis based on remote geostructural surveys: The Campione del Garda case study (Lake Garda, Northern Italy). Geomorphology, 2011, 125, 457-471.	2.6	28
9	Terrestrial Photogrammetry and Numerical Modelling for the Stability Analysis of Rock Slopes in High Mountain Areas: Aiguilles Marbrées case. Rock Mechanics and Rock Engineering, 2014, 47, 605-620.	5.4	23
10	In situ stress measurements interpretations in large underground marble quarry by 3D modeling. International Journal of Rock Mechanics and Minings Sciences, 2013, 60, 103-113.	5.8	17
11	Advantages of IoT-Based Geotechnical Monitoring Systems Integrating Automatic Procedures for Data Acquisition and Elaboration. Sensors, 2021, 21, 2249.	3.8	14
12	A Factor Strength Approach for the Design of Rock Fall and Debris Flow Barriers. Geotechnical and Geological Engineering, 2017, 35, 2663-2675.	1.7	12
13	Underground Landslide Displacement Monitoring: A New MMES Based Device. , 2013, , 87-93.		11
14	Geomechanical studies on slow slope movements in Parma Apennine. Engineering Geology, 2009, 109, 31-44.	6.3	10
15	Studies of Flexible Barriers Under Debris Flow Impact: An Application to an Alpine Basin. Procedia Earth and Planetary Science, 2015, 15, 165-172.	0.6	10
16	Definition and application of a multi-criteria algorithm to identify landslide acceleration phases. Georisk, 0, , 1-15.	3.5	10
17	Numerical Model for the Analysis of the Evolution Mechanisms of the Grossgufer Rock Slide. Rock Mechanics and Rock Engineering, 2004, 37, 151-168.	5.4	8
18	Improving Landslide Displacement Measurement through Automatic Recording and Statistical Analysis. Procedia Earth and Planetary Science, 2015, 15, 536-541.	0.6	7

ANDREA SEGALINI

#	Article	IF	CITATIONS
19	Innovative Monitoring Tools and Early Warning Systems for Risk Management: A Case Study. Geosciences (Switzerland), 2019, 9, 62.	2.2	7
20	Automated Inclinometer Monitoring Based on Micro Electro-Mechanical System Technology: Applications and Verification. , 2014, , 595-600.		7
21	A multi-parameter field monitoring system to investigate the dynamics of large earth slides–earth flows in the Northern Apennines, Italy. Engineering Geology, 2020, 275, 105780.	6.3	6
22	Formulation of landslide risk scenarios using underground monitoring data and numerical models: conceptual approach, analysis, and evolution of a case study in Southern Italy. Landslides, 2019, 16, 1043-1053.	5.4	5
23	Debris flow impact on a flexible barrier: laboratory flume experiments and force-based mechanical model validation. Natural Hazards, 2021, 106, 735-756.	3.4	5
24	GROUND TEMPERATURE MONITORING FOR A COAXIAL GEOTHERMAL HEAT EXCHANGERS FIELD: PRACTICAL ASPECTS AND MAIN ISSUES FROM THE FIRST YEAR OF MEASUREMENTS. Rudarsko Geolosko Naftni Zbornik, 2018, 33, 47-57.	0.5	4
25	Buildings Under the Rocks: An Interdisciplinary Approach for A Safe Conservation. Procedia Engineering, 2016, 161, 2222-2228.	1.2	2
26	Joint Modelling and Monitoring on Case Pennetta and Case Costa Active Landslides System Using Electrical Resistivity Tomography and Geotechnical Data. , 2017, , 593-600.		2
27	Development and Preliminary Tests of a Low-Power Automatic Monitoring System for Flexible Debris Flow Barriers. Transportation Research Procedia, 2021, 55, 1783-1790.	1.5	2
28	Application of a Generalized Criterion: Time-of-Failure Forecast and Alert Thresholds Assessment for Landslides. , 2020, , 283-298.		2
29	Geotechnical and Geophysical Characterization of Frozen Granular Material. Environmental Science and Engineering, 2014, , 205-218.	0.2	2
30	Experimental study for the design of flexible barriers under debris flow impact. , 2016, , 1951-1956.		2
31	The Boschetto landslide: monitoring, numerical analysisand interpretation. Rendiconti Online Societa Geologica Italiana, 0, 35, 276-279.	0.3	2
32	Innovative monitoring instruments as support tools for natural risks management. Rendiconti Online Societa Geologica Italiana, 0, 48, 76-83.	0.3	2
33	Application of innovative monitoring tools for safety and alert procedures in road tunnels. Transportation Research Procedia, 2019, 40, 1540-1547.	1.5	1
34	Monitoring of a retaining wall with innovative multi-parameter tools. , 2019, , .		1
35	Innovative Application of IoT Technologies to Improve Geotechnical Monitoring Tools and Early Warning Performances. Springer Series in Geomechanics and Geoengineering, 2021, , 142-146.	0.1	1
36	Application of Low Potential Electric Fields for Improving Slope Stability. Procedia Earth and Planetary Science, 2015, 15, 173-180.	0.6	0

#	Article	IF	CITATIONS
37	A Simplified Analytical Model for the Design of Flexible Barriers Against Debris Flows. , 2014, , 725-730.		о