
Stefano Colazza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1448441/publications.pdf Version: 2024-02-01

5

45

#	Article	IF	CITATIONS
1	Insect oviposition induces volatile emission in herbaceous plants that attracts egg parasitoids. Journal of Experimental Biology, 2004, 207, 47-53.	1.7	186
2	Volatile and Contact Chemicals Released by Nezara viridula (Heteroptera:Pentatomidae) Have a Kairomonal Effect on the Egg Parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). Biological Control, 1999, 16, 310-317.	3.0	139
3	Identification of Volatile Synomones, Induced by Nezara viridula Feeding and Oviposition on Bean spp., That Attract the Egg Parasitoid Trissolcus basalis. Journal of Chemical Ecology, 2004, 30, 945-964.	1.8	120
4	The Egg Parasitoid Trissolcus basalis uses n-nonadecane, a Cuticular Hydrocarbon from its Stink Bug Host Nezara viridula, to Discriminate Between Female and Male Hosts. Journal of Chemical Ecology, 2007, 33, 1405-1420.	1.8	88
5	Kairomonal effect of walking traces from Euschistus heros (Heteroptera: Pentatomidae) on two strains of Telenomus podisi (Hymenoptera: Scelionidae). Physiological Entomology, 2003, 28, 349-355.	1.5	69
6	Genetic variation in patch time allocation in a parasitic wasp. Journal of Animal Ecology, 1999, 68, 121-133.	2.8	68
7	Effect of host kairomones and oviposition experience on the arrestment behavior of an egg parasitoid. Journal of Experimental Biology, 2006, 209, 3629-3635.	1.7	60
8	Biological control of invasive stink bugs: review of global state and future prospects. Entomologia Experimentalis Et Applicata, 2021, 169, 28-51.	1.4	60
9	Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: consequences in terms of patchâ€ŧime allocation. Journal of Animal Ecology, 2004, 73, 1179-1189.	2.8	59
10	Interspecific competition/facilitation among insect parasitoids. Current Opinion in Insect Science, 2016, 14, 12-16.	4.4	59
11	Influence of Feeding and Oviposition by Phytophagous Pentatomids on Photosynthesis of Herbaceous Plants. Journal of Chemical Ecology, 2010, 36, 629-641.	1.8	55
12	Sub-lethal effects of deltamethrin on walking behaviour and response to host kairomone of the egg parasitoidTrissolcus basalis. Pest Management Science, 2002, 58, 663-668.	3.4	49
13	A comparative analysis of patch-leaving decision rules in a parasitoid family. Journal of Animal Ecology, 2003, 72, 618-626.	2.8	49
14	Chemical Ecology of Egg Parasitoids Associated with True Bugs. Psyche: Journal of Entomology, 2012, 2012, 1-11.	0.9	48
15	Chemo-orientation responses in hymenopteran parasitoids induced by substrate-borne semiochemicals. BioControl, 2014, 59, 1-17.	2.0	48
16	Growth patterns of teratocytes in the immature stages of Trissolcus basalis (Woll.) (Hymenoptera :) Tj ETQq0 0 C Structure and Development, 1992, 21, 323-336.	rgBT /Ove 0.4	erlock 10 Tf 47
17	Interspecific extrinsic and intrinsic competitive interactions in egg parasitoids. BioControl, 2012, 57, 719-734.	2.0	47

 Efficiency of Trissolcus basalis (Hymenoptera: Scelionidae) as an Egg Parasitoid of Nezara viridula (Heteroptera: Pentatomidae) in Central Italy. Environmental Entomology, 1995, 24, 1703-1707.

STEFANO COLAZZA

#	Article	IF	CITATIONS
19	Responses of <i>Rhynchophorus ferrugineus</i> adults to selected synthetic palm esters: electroantennographic studies and trap catches in an urban environment. Pest Management Science, 2011, 67, 77-81.	3.4	45
20	Attraction of egg-killing parasitoids toward induced plant volatiles in a multi-herbivore context. Oecologia, 2015, 179, 163-174.	2.0	45
21	Kairomone involvement in the host specificity of the egg parasitoid Trissolcus basalis (Hymenoptera:) Tj ETQq1	l 0.784314 1.2	rgBT /Overlo
22	Inter and intra-guild interactions in egg parasitoid species of the soybean stink bug complex. Pesquisa Agropecuaria Brasileira, 2002, 37, 1541-1549.	0.9	43
23	The culturable bacterial community of frass produced by larvae of Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) in the Canary island date palm. Letters in Applied Microbiology, 2012, 54, 530-536.	2.2	42
24	Chemical ecology meets conservation biological control: identifying plant volatiles as predictors of floral resource suitability for an egg parasitoid of stink bugs. Journal of Pest Science, 2017, 90, 299-310.	3.7	42
25	Response of Egg Parasitoid Telenomus busseolae to Sex Pheromone of Sesamia nonagrioides. Journal of Chemical Ecology, 1997, 23, 2437-2444.	1.8	41
26	The response of Trissolcus basalis to footprint contact kairomones from Nezara viridula females is mediated by leaf epicuticular waxes. Die Naturwissenschaften, 2009, 96, 975-981.	1.6	41
27	Chemical and Physical Signals Mediating Conspecific and Heterospecific Aggregation Behavior of First Instar Stink Bugs. Journal of Chemical Ecology, 2004, 30, 1257-1269.	1.8	40
28	Intraguild interactions between two egg parasitoids exploring host patches. BioControl, 2011, 56, 173-184.	2.0	39
29	Prospects of herbivore eggâ€killing plant defenses for sustainable crop protection. Ecology and Evolution, 2016, 6, 6906-6918.	1.9	38
30	The predatory mirid Dicyphus maroccanus as a new potential biological control agent in tomato crops. BioControl, 2014, 59, 565-574.	2.0	37
31	Lures for red palm weevil trapping systems: aggregation pheromone and synthetic kairomone. Pest Management Science, 2017, 73, 223-231.	3.4	37
32	Investigation of cuticular hydrocarbons from Bagrada hilaris genders by SPME/GC-MS. Analytical and Bioanalytical Chemistry, 2007, 389, 1259-1265.	3.7	33
33	Evidence of stochastic resonance in the mating behavior of Nezara viridula (L.). European Physical Journal B, 2008, 65, 453-458.	1.5	33
34	A finely tuned strategy adopted by an egg parasitoid to exploit chemical traces from host adults. Journal of Experimental Biology, 2009, 212, 1825-1831.	1.7	33
35	Behavioral response of the egg parasitoid Ooencyrtus telenomicida to host-related chemical cues in a tritrophic perspective. BioControl, 2011, 56, 163-171.	2.0	32
36	Assessment of synthetic chemicals for disruption of Rhynchophorus ferrugineus response to attractant-baited traps in an urban environment. Phytoparasitica, 2013, 41, 79-88.	1.2	32

#	Article	IF	CITATIONS
37	Role of volatile and contact pheromones in the mating behaviour of Bagrada hilaris (Heteroptera:) Tj ETQq1 1	0.784314 rg	gBT ₃ Overlock
38	Olfactory response of two aphid parasitoids, Lysiphlebus testaceipes and Aphidius colemani, to aphid-infested plants from a distance. Entomologia Experimentalis Et Applicata, 2004, 110, 159-164.	1.4	30
39	Effects of water stress on emission of volatile organic compounds by Vicia faba, and consequences for attraction of the egg parasitoid Trissolcus basalis. Journal of Pest Science, 2017, 90, 635-647.	3.7	29
40	The ovipositing female of <i>Ooencyrtus telenomicida</i> relies on physiological mechanisms to mediate intrinsic competition with <i>Trissolcus basalis</i> . Entomologia Experimentalis Et Applicata, 2012, 143, 155-163.	1.4	28
41	Egg parasitoid attraction toward induced plant volatiles is disrupted by a non-host herbivore attacking above or belowground plant organs. Frontiers in Plant Science, 2014, 5, 601.	3.6	27
42	Fine Structure of Antennal Sensilla of Paysandisia archon and Electrophysiological Responses to Volatile Compounds Associated with Host Palms. PLoS ONE, 2015, 10, e0124607.	2.5	27
43	Genetic variability in the area searched by a parasitic wasp: analysis from automatic video tracking of the walking path. Journal of Insect Physiology, 1998, 44, 437-444.	2.0	26
44	Fortuitous Introduction and Successful Establishment ofTrichopoda pennipesF.: Adult Parasitoid ofNezara viridula(L.). Biological Control, 1996, 6, 409-411.	3.0	25
45	Behaviour-modifying compounds for management of the red palm weevil (<i>Rhynchophorus) Tj ETQq1 1 0.7</i>	′84314 rgBT ,	Overlock 10
46	Thermal stress affects patch time allocation by preventing forgetting in a parasitoid wasp. Behavioral Ecology, 2015, 26, 1326-1334.	2.2	25
47	The Plant as a Habitat for Entomophagous Insects. Advances in Botanical Research, 2017, 81, 179-223.	1.1	25
48	An invasive insect herbivore disrupts plant volatile-mediated tritrophic signalling. Journal of Pest Science, 2017, 90, 1079-1085.	3.7	23
49	Intraguild Interactions between Two Egg Parasitoids of a True Bug in Semi-Field and Field Conditions. PLoS ONE, 2014, 9, e99876.	2.5	23
50	Electrophysiological and behavioural responses of the housefly to "sweet―volatiles of the flowers of Caralluma europaea (Guss.) N.E. Br Arthropod-Plant Interactions, 2013, 7, 485-489.	1.1	22
51	Intraguild Interactions between Egg Parasitoids: Window of Opportunity and Fitness Costs for a Facultative Hyperparasitoid. PLoS ONE, 2013, 8, e64768.	2.5	22
52	Noise effects in two different biological systems. European Physical Journal B, 2009, 69, 133-146.	1.5	21
53	Host Sex Discrimination by an Egg Parasitoid on Brassica Leaves. Journal of Chemical Ecology, 2011, 37, 622-628.	1.8	21
54	Host Chemical Footprints Induce Host Sex Discrimination Ability in Egg Parasitoids. PLoS ONE, 2013, 8, e79054.	2.5	21

STEFANO COLAZZA

#	Article	IF	CITATIONS
55	Behavioral responses of the parasitoid <i>Melittobia digitata</i> to volatiles emitted by its natural and laboratory hosts. Entomologia Experimentalis Et Applicata, 2010, 136, 301-307.	1.4	20
56	Volatile compounds released by disturbed and undisturbed adults of Anchomenus dorsalis (Coleoptera, Carabidae, Platynini) and structure of the pygidial gland. ZooKeys, 2011, 81, 13-25.	1.1	20
57	The gut microbiota of the wood-feeding termite Reticulitermes lucifugus (Isoptera; Rhinotermitidae). Annals of Microbiology, 2016, 66, 253-260.	2.6	20
58	Contrasting olfactory responses of two egg parasitoids to buckwheat floral scent are reflected in field parasitism rates. Journal of Pest Science, 2019, 92, 747-756.	3.7	20
59	Trichoderma harzianum Strain T22 Modulates Direct Defense of Tomato Plants in Response to Nezara viridula Feeding Activity. Journal of Chemical Ecology, 2021, 47, 455-462.	1.8	18
60	Host Searching by Egg Parasitoids: Exploitation of Host Chemical Cues. , 2009, , 97-147.		17
61	Differences in the searching behaviour of two strains of the egg parasitoid Telenomus busseolae (Hymenoptera: Scelionidae). European Journal of Entomology, 2001, 98, 47-52.	1.2	17
62	Host kairomone learning and foraging success in an egg parasitoid: a simulation model. Ecological Entomology, 2009, 34, 193-203.	2.2	15
63	Behavioral and Chemical Investigations of Contact Kairomones Released by the Mud Dauber Wasp Trypoxylon politum, a Host of the Parasitoid Melittobia digitata. Journal of Chemical Ecology, 2011, 37, 629-639.	1.8	15
64	The response of an egg parasitoid to substrate-borne semiochemicals is affected by previous experience. Scientific Reports, 2016, 6, 27098.	3.3	15
65	First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role. Journal of Insect Physiology, 2018, 107, 68-80.	2.0	15
66	Fitness costs of intrinsic competition in two egg parasitoids of a true bug. Journal of Insect Physiology, 2015, 81, 52-59.	2.0	14
67	Impact of the invasive painted bug Bagrada hilaris on physiological traits of its host Brassica oleracea var botrytis. Arthropod-Plant Interactions, 2017, 11, 649-658.	1.1	14
68	Volatile unsaturated hydrocarbons emitted by seedlings of Brassica species provide host location cues to Bagrada hilaris. PLoS ONE, 2018, 13, e0209870.	2.5	12
69	Foraging behaviour of an egg parasitoid exploiting plant volatiles induced by pentatomids: the role of adaxial and abaxial leaf surfaces. PeerJ, 2017, 5, e3326.	2.0	12
70	Title is missing!. BioControl, 2002, 47, 617-624.	2.0	11
71	Emergence, dispersal, and mate finding via a substrateâ€borne sex pheromone in the parasitoid <i><scp>M</scp>etaphycus luteolus</i> . Entomologia Experimentalis Et Applicata, 2013, 148, 74-83.	1.4	11
72	Applied Chemical Ecology to Enhance Insect Parasitoid Efficacy in the Biological Control of Crop		11

Pests. , 2018, , 234-267.

STEFANO COLAZZA

#	Article	IF	CITATIONS
73	A femaleâ€produced shortâ€range sex pheromone in the egg parasitoid <i><scp>T</scp>rissolcus brochymenae</i> . Invertebrate Biology, 2012, 131, 144-153.	0.9	10
74	Mating Status of an Herbivorous Stink Bug Female Affects the Emission of Oviposition-Induced Plant Volatiles Exploited by an Egg Parasitoid. Frontiers in Physiology, 2019, 10, 398.	2.8	10
75	Testing the habituation assumption underlying models of parasitoid foraging behavior. PeerJ, 2017, 5, e3097.	2.0	10
76	Plant surfaces of vegetable crops mediate interactions between chemical footprints of true bugs and their egg parasitoids. Communicative and Integrative Biology, 2010, 3, 70-74.	1.4	8
77	Infestation of Broad Bean (Vicia faba) by the Green Stink Bug (Nezara viridula) Decreases Shoot Abscisic Acid Contents under Well-Watered and Drought Conditions. Frontiers in Plant Science, 2017, 8, 959.	3.6	8
78	Intrinsic competition between two European egg parasitoids of the brown marmorated stink bug. Journal of Applied Entomology, 2020, 144, 669-677.	1.8	8
79	The Role of (E)-2-octenyl Acetate as a Pheromone of Bagrada hilaris (Burmeister): Laboratory and Field Evaluation. Insects, 2020, 11, 109.	2.2	8
80	Female-Released Sex Pheromones Mediating Courtship Behavior in <i>Lysiphlebus testaceipes</i> Males. Journal of Insect Science, 2013, 13, 1-14.	0.9	6
81	Egg parasitoid exploitation of plant volatiles induced by single or concurrent attack of a zoophytophagous predator and an invasive phytophagous pest. Scientific Reports, 2019, 9, 18956.	3.3	6
82	Detection and monitoring of Drosophila suzukii in raspberry and cherry orchards with volatile organic compounds in the USA and Europe. Scientific Reports, 2021, 11, 6860.	3.3	6
83	Contrasting reproductive traits of competing parasitoids facilitate coexistence on a shared host pest in a biological control perspective. Pest Management Science, 2022, 78, 3376-3383.	3.4	6
84	Responses of Metaphycussp. nr. flavus to semiochemicals released from a scale host, Coccus hesperidum. Chemoecology, 2004, 14, 151.	1.1	5
85	Identification of Brassicadiene, a Diterpene Hydrocarbon Attractive to the Invasive Stink Bug <i>Bagrada hilaris</i> , from Volatiles of Cauliflower Seedlings, <i>Brassica oleracea</i> var. <i>botrytis</i> . Organic Letters, 2020, 22, 2972-2975.	4.6	5
86	First report of Melittobia australica Girault in Europe and new record of M. acasta (Walker) for Italy. ZooKeys, 2012, 181, 45-51.	1.1	4
87	Only Females Oviposit: Chemical Discrimination of Adult Stink Bug Sex by the Egg Parasitoid Trissolcus japonicus. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4
88	Foraging behavior of two egg parasitoids exploiting chemical cues from the stink bug Piezodorus guildinii (Hemiptera: Pentatomidae). Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180597.	0.8	4
89	The invasive stink bug Halyomorpha halys affects the reproductive success and the experience-mediated behavioural responses of the egg parasitoid Trissolcus basalis. BioControl, 2021, 66, 329-342.	2.0	3
90	Genetic variation in the behavioural mechanisms involved in the response of the egg parasitoid Trissolcus brochymenae to contact chemical cues left by the pest Murgantia histrionica. Ecological Entomology, 2021, 46, 100-105.	2.2	2

#	Article	IF	CITATIONS
91	Chapter 8 Plant and Stink Bug Interactions at Different Trophic Levels. , 2017, , 180-199.		2
92	Members of the WRKY gene family are upregulated in Canary palms attacked by Red Palm Weevil. Arthropod-Plant Interactions, 2019, 13, 109-116.	1.1	1
93	Evaluation of Brassicaceae Seedlings as Trap Plants for Bagrada Hilaris Burmeister in Caper Bush Cultivations. Sustainability, 2020, 12, 6361.	3.2	1
94	Editorial: Chemical Ecology and Conservation Biological Control. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	0