
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1447946/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physical nature of rail surface hardening during long-term operation. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2022, 64, 886-894.	0.3	0
2	Investigation of Co-Cr-Fe-Mn-Ni Non-Equiatomic High-Entropy Alloy Fabricated by Wire Arc Additive Manufacturing. Metals, 2022, 12, 197.	2.3	14
3	Ultrafast microstructure modification by pulsed electron beam to enhance surface performance. Surface and Coatings Technology, 2022, 434, 128226.	4.8	7
4	Structure and Properties of Ag-Ni-N Coating Formed on Copper by Electroexplosive Spraying Combined with Pulsed Electron Beam Irradiation and Nitriding. Physical Mesomechanics, 2022, 25, 18-25.	1.9	3
5	Modification of hypereutectic silumin by a pulsed electron beam. High Temperature Material Processes, 2022, , .	0.6	0
6	Combined electron-ion-plasma treatment of 40Cr steel surface. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2022, 65, 127-133.	0.3	0
7	Surface modification of sub-eutectic silumin by a pulsed electron beam. Surfaces and Interfaces, 2022, 29, 101810.	3.0	3
8	Transformation of structural-phase states in rail head at extremely long-term operation. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2022, 65, 209-215.	0.3	0
9	Physical nature of rails strengthening in extremely long-term operation. AIP Conference Proceedings, 2022, , .	0.4	0
10	Structure, Dislocation Hardening, and Fracture Surface of an Arc Sprayed Coating Made of a Low-Carbon Steel. Russian Metallurgy (Metally), 2022, 2022, 239-244.	0.5	1
11	Structural-Phase State and Fracture of a Low-Carbon Steel Coating. Russian Metallurgy (Metally), 2022, 2022, 320-324.	0.5	0
12	Structure–Phase Transformations in the Modified Surface of Al-20%Si Alloy Subjected to Two-Stage Treatment. Lubricants, 2022, 10, 133.	2.9	0
13	Fractography of fracture surface of CrMnFeCoNi high-entropy alloy after electron-beam processing. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2022, 65, 427-433.	0.3	2
14	Modifying of Titanium VT6 Alloy Surface by Electrical Explosion Alloying. , 2021, , 123-136.		0
15	Structural Changes in the Surface of AK5M2 Alloy under the Influence of an Intense Pulsed Electron Beam. Journal of Surface Investigation, 2021, 15, 183-189.	0.5	1
16	Fractography of Silumin Surface Fractured in High-Cycle Fatigue Tests. , 2021, , 91-108.		0
17	Variation in the yield point of differentially quenched rails at severe plastic deformation. Letters on Materials, 2021, 11, 100-103.	0.7	0
18	Special Analysis Aspects of Modified Light Alloys. , 2021, , 53-73.		0

5.8

14

#	Article	IF	CITATIONS
19	Structure and Properties of As-Cast Silumin and Processed by Intense Pulsed Electron Beam. , 2021, , 75-90.		0
20	Surface Boriding and Titanization Stainless Steel by Integrated Processes. Journal of Surface Investigation, 2021, 15, 200-209.	0.5	3
21	Regularities of structure and properties modification of the steel surface layer as a result of high-cycle high-speed melting of the "film (Si + Nb) / (steel) substrate―system by an intense pulsed electron beam. Journal of Physics: Conference Series, 2021, 1799, 012017.	0.4	0
22	Evolution of the Fine Structure and Properties of Rail Metal during Long-Term Operation. Physical Mesomechanics, 2021, 24, 202-210.	1.9	2
23	Effect of pulsed electron beam treatment on microstructure and functional properties of Al-5.4Si-1.3Cu alloy. Nuclear Instruments & Methods in Physics Research B, 2021, 488, 23-29.	1.4	12
24	Deformation strengthening mechanisms of rails in extremely long-term operation. Journal of Materials Research and Technology, 2021, 11, 710-718.	5.8	8
25	Electroexplosive hafnium coating on titanium implant modified by nitrogen ions and electron beam processing. Surface and Coatings Technology, 2021, 409, 126895.	4.8	6
26	Increase of alloys functional properties by electronic beam processing. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 129-134.	0.3	0
27	Structure of Differentially Hardened Rails after Severe Plastic Deformation. Russian Metallurgy (Metally), 2021, 2021, 426-429.	0.5	3
28	Pulsed-Electron-Beam Modification of The Surface of Al–Mg Alloy Samples Obtained by the Methods of Additive Technologies: Structure and Properties. Journal of Surface Investigation, 2021, 15, 449-452.	0.5	0
29	Influence of Silicon and Manganese on the Mechanical Properties of Additive Manufactured Cu–Al Alloys by Cold Metal Transfer Welding. Metallography, Microstructure, and Analysis, 2021, 10, 314-320.	1.0	0
30	Structure, Phase Composition and Properties of Rail Running Surface at Extremely Long Operation Time. Russian Physics Journal, 2021, 64, 82-88.	0.4	0
31	ϴ;ϴ¢ϴϿ£ϴϗϴͼϴϼϿϿϿ;ϿʹϿ;ϿʹϿ;ϿʹϿ;ϿʹϿ;ϿʹϷ;Ͽʹ;ϿͼϿ;ϿϿ;ϿϿ;ϿϿ;ϿϿ;ϿϿ;ϿϿ;ϿϿ;ϿϿ;ϿϿ;Ͽ;Ͽ;Ͽ;	ЕМЕД	'Đĩ⊕šĐžĐc <mark>e</mark> €
32	Investigation of Microstructure and Fracture Mechanism of Al-5.0Mg Alloys Fabricated by Wire Arc Additive Manufacturing. Journal of Materials Engineering and Performance, 2021, 30, 7406-7416.	2.5	9
33	Microstructural and mechanical characterisation of non-equiatomic Al _{2.1} Co _{0.3} Cr _{0.5} FeNi _{2.1} high-entropy alloy fabricated via wire-arc additive manufacturing. Philosophical Magazine Letters, 2021, 101, 353-359.	1.2	14
34	Ð~ÐįÐįÐ»Đ•Đ"ĐžĐ'ÐĐĐ~Đ• ÐįТĐĐ£ĐšĐ¢Đ£ĐĐ« Đ~ ĐįВОЙĐįĐ¢Đ' Đ'θ«ĐįОКОĐĐĐ¢ĐĐžĐŸĐ~Đ™ĐĐž£	"Đ ž.Đ ¡ĐΫł	Ð> ÐВЕ AlCo
35	New Ti–35Nb–7Zr–5Ta Alloy Manufacturing by Electron Beam Melting for Medical Application Followed by High Current Pulsed Electron Beam Treatment. Metals, 2021, 11, 1066.	2.3	15

Modification of high-entropy alloy AlCoCrFeNi by electron beam treatment. Journal of Materials Research and Technology, 2021, 13, 787-797.

#	Article	IF	CITATIONS
37	Effect of electron beam energy densities on the surface morphology and tensile property of additively manufactured Al-Mg alloy. Nuclear Instruments & Methods in Physics Research B, 2021, 498, 15-22.	1.4	14
38	Phase Composition, Structure, and Properties of an Electroexplosive Coating on a WC–Ag–N System after Electron-Beam Processing and Nitriding. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 810-817.	0.6	0
39	Evolution of Structure in AlCoCrFeNi High-Entropy Alloy Irradiated by a Pulsed Electron Beam. Metals, 2021, 11, 1228.	2.3	18
40	The mechanism of formation of surface micro- and nanostructures in the AlCoCrFeNi high-entropy alloy during electron-beam treatment. Letters on Materials, 2021, 11, 309-314.	0.7	3
41	Modifying of Structure-Phase States and Properties of Metals by Concentrated Energy Flows. , 2021, , 1-52.		0
42	Research on Cu-6.6%Al-3.2%Si Alloy by Dual Wire Arc Additive Manufacturing. Journal of Materials Engineering and Performance, 2021, 30, 1694-1702.	2.5	15
43	Multi-cycle of AISI 5135 steel modification by irradiation of the "film (Si (0.2 μm) + Nb (0.2 μm))/(AISI 5135 2021, 2064, 012041.) Tj ETQq1 0.4	1 0.7843] 0
44	Formation of a silicon-niobium-based surface alloy using electron-ion-plasma surface engineering. Journal of Physics: Conference Series, 2021, 2064, 012067.	0.4	0
45	Experimental Study and Mathematical Modeling of the Processes Occurring in ZrN Coating/Silumin Substrate Systems under Pulsed Electron Beam Irradiation. Coatings, 2021, 11, 1461.	2.6	2
46	Surface modification of hypereutectic silumin subjected to a millisecond modulated electron beam treatment. Journal of Physics: Conference Series, 2021, 2064, 012045.	0.4	2
47	Deposition of boron films using a discharge system with a hot boron anode. Journal of Physics: Conference Series, 2021, 2064, 012068.	0.4	0
48	Strengthening Mechanisms of Rail Metal during Continuous Operation. Inorganic Materials: Applied Research, 2021, 12, 1540-1546.	0.5	0
49	Structure and mechanical properties of stainless-steel specimens, made by additive method, after pulsed electron beam treatment. Journal of Physics: Conference Series, 2021, 2064, 012076.	0.4	0
50	Structural Phase Variations in High-Entropy Alloy upon Pulsed Electron Beam Irradiation. Steel in Translation, 2021, 51, 788-794.	0.3	1
51	Structural phase variations in high-entropy alloy at irradiation by pulsed electron beam. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 846-854.	0.3	0
52	Physical Nature of Rail Surface Hardening during Long-Term Operation. Steel in Translation, 2021, 51, 859-865.	0.3	0
53	Fatigue-Induced Evolution of AISI 310S Steel Microstructure after Electron Beam Treatment. Materials, 2020, 13, 4567.	2.9	14
54	Liquid-Phase Boriding of High-Chromium Steel. Steel in Translation, 2020, 50, 452-459.	0.3	4

#	Article	IF	CITATIONS
55	Improving the Mechanical Properties of SiC-ceramics by means of Vacuum Electron-ion-plasma Alloying with Titanium. IOP Conference Series: Materials Science and Engineering, 2020, 731, 012015.	0.6	6
56	The Structure and Mechanical Characteristics of the Hypereutectic Silumin (Al–22–24 wt.% Si), Irradiated by a Pulsed Electron Beam. , 2020, , .		0
57	The Role of Lattice Curvature in Structural Degradation of the Metal Surface Layer of a Rail under Long-term Operation. Doklady Physics, 2020, 65, 376-378.	0.7	6
58	Structure and Properties of the Steel Surface Layer Containing Nitrides and Silicides of High-Melting Metals Formed by Electron-Ion-Plasma Method. , 2020, , .		1
59	Boron electroexplosive alloying of austenite steel. IOP Conference Series: Materials Science and Engineering, 2020, 866, 012052.	0.6	0
60	Structure and properties of differentially hardened 100-m rails after long-term operation. IOP Conference Series: Materials Science and Engineering, 2020, 866, 012053.	0.6	0
61	Layer-by-Layer Analysis of the Cr–Ni–Ti Coating Substructure Obtained via Selective Laser Melting. Journal of Surface Investigation, 2020, 14, 1022-1028.	0.5	1
62	Modification of Al-10Si-2Cu alloy surface by intensive pulsed electron beam. Journal of Materials Research and Technology, 2020, 9, 5591-5598.	5.8	13
63	Effect of Electron-Beam Treatment on the Structure of Commercial-Purity Titanium Subjected to Fatigue Failure. Russian Metallurgy (Metally), 2020, 2020, 401-407.	0.5	0
64	A low-current atmospheric pressure discharge generating atomic magnesium fluxes. Journal of Applied Physics, 2020, 127, .	2.5	3
65	The Structural Formation in Differentially-Hardened 100-Meter-Long Rails during Long-Term Operation. Steel in Translation, 2020, 50, 77-83.	0.3	3
66	High Chrome Steel Modified by High-Current Pulsed Electron Beam. Russian Physics Journal, 2020, 62, 2081-2085.	0.4	5
67	Structure and Properties of Silumin Surface after Vacuum Arc Plasma-Assisted Deposition of Coatings Irradiated by Low Energy High Current Pulsed Electron Beam. Russian Physics Journal, 2020, 62, 2106-2111.	0.4	5
68	Effect of Carbon Nanotubes and Graphene Nanoplatelets on the Mechanical Properties of Zirconia-Based Composites. , 2020, , .		2
69	Formation of Fine Surface of Long Rails on Differentiated Hardening. Journal of Surface Investigation, 2020, 14, 1187-1190.	0.5	1
70	Effect of Electron-Plasma Treatment on the Microstructure of Al-11wt%Si Alloy. Materials Research, 2020, 23, .	1.3	3
71	Development of the structure of differentially hardened 100 m rails during their long operation. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2020, 63, 108-115.	0.3	7
72	Formation of Gradient Structure in Rails at Long-Term Operation. Materials Research, 2020, 23, .	1.3	1

#	Article	IF	CITATIONS
73	Liquid-phase boriding of high-chromium steel. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2020, 63, 539-547.	0.3	0
74	Hardening mechanisms for rails metal during long-term operation. Voprosy Materialovedeniya, 2020, , 17-28.	0.1	0
75	Complex Method of Structural Steel Treatment. , 2020, , .		0
76	Structure and Properties of Electro-Explosive TiC–Ni–Mo Coatings of Die Steel after Electron-Beam Treatment. Inorganic Materials: Applied Research, 2019, 10, 606-615.	0.5	1
77	Formation of Gradient Structure–Phase States in the Surface Layers of 100-m Differentially Quenched Rails. Russian Metallurgy (Metally), 2019, 2019, 710-715.	0.5	0
78	Increase in Wear Resistance of the Surface Layers of AK10M2N Silumin at Electron-Beam Treatment. Inorganic Materials: Applied Research, 2019, 10, 622-628.	0.5	2
79	Modification of surface layer of hypoeutectic silumin by electroexplosion alloying followed by electron beam processing. Materials Letters, 2019, 253, 55-58.	2.6	11
80	Improvement of copper alloy properties in electro-explosive spraying of ZnO-Ag coatings resistant to electrical erosion. Journal of Materials Research and Technology, 2019, 8, 5515-5523.	5.8	25
81	Effect of electron-plasma alloying on structure and mechanical properties of Al-Si alloy. Applied Surface Science, 2019, 498, 143767.	6.1	29
82	Effect of the Density of Electron Beam Energy on the Structure and Mechanical Characteristics of Surface Layers of Hypoeutectic Silumin. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 1282-1288.	0.6	1
83	Formation and Evolution of Structure and Phase Composition of Hypoeutectoid Silumin on Electron Beam Processing. Journal of Surface Investigation, 2019, 13, 809-813.	0.5	3
84	Structural-Phase State and Properties of Steel After Plasma-Electron Modification. Russian Physics Journal, 2019, 62, 940-947.	0.4	2
85	Microstructure and micro-hardness behavior of Ti–Y2O3 –Al–Si composite coatings prepared in electron-plasma alloying. Materials Characterization, 2019, 158, 109934.	4.4	4
86	Phase Formation Initiated by Irradiation of the Film (Si) – Substrate (Grade 3 Steel) System with a High-Intensity Pulsed Electron Beam. Russian Physics Journal, 2019, 62, 673-679.	0.4	1
87	Structural-Phase State and the Properties of Silumin after Electron-Beam Surface Treatment. Russian Metallurgy (Metally), 2019, 2019, 398-402.	0.5	4
88	Microstructure and mechanical properties of doped and electron-beam treated surface of hypereutectic Al-11.1%Si alloy. Journal of Materials Research and Technology, 2019, 8, 3835-3842.	5.8	15
89	Effect of electron-beam processing on structure of electroexplosive electroerosion resistant coatings of CuO-Ag system. Materials Research Express, 2019, 6, 085077.	1.6	6
90	Enhanced piezoelectric response of hybrid biodegradable 3D poly(3-hydroxybutyrate) scaffolds coated with hydrothermally deposited ZnO for biomedical applications. European Polymer Journal, 2019, 117, 272-279.	5.4	47

#	Article	IF	CITATIONS
91	Structural and phase changes under electropulse treatment of fatigue-loaded titanium alloy VT1-0. Journal of Materials Research and Technology, 2019, 8, 1300-1307.	5.8	36
92	Peculiarities of the fracture upon tensile deformation of hypoeutectic silumin samples after irradiation with an intensive pulse electron beam digital image correlation method. IOP Conference Series: Materials Science and Engineering, 2019, 665, 012005.	0.6	0
93	Wear Resistance of the Surface Layers in Silumin after Electron-Beam Treatment. Russian Metallurgy (Metally), 2019, 2019, 981-985.	0.5	1
94	Structural Phase State of Surface Alloyed Y2O3 Silumin After Electron beam Processing. Journal of Surface Investigation, 2019, 13, 1343-1349.	0.5	2
95	Structure and properties of the electromagnetic starter's contacts with the electro-explosive CuO-Ag coating. Journal of Physics: Conference Series, 2019, 1347, 012123.	0.4	0
96	Structure and properties of Ni-Cr-B-Si powder coating formed on A356Gr steel using a combined method. Journal of Physics: Conference Series, 2019, 1393, 012089.	0.4	0
97	Nanostructure formation of hypoeutectic silumin by electronion-plasma methods. Journal of Physics: Conference Series, 2019, 1393, 012091.	0.4	2
98	Microdiffraction analysis of structure of silumin's high-velocity cellular crystallization. Journal of Physics: Conference Series, 2019, 1393, 012114.	0.4	0
99	Surface temperature measurements of TiCuN-A7 system during pulsed electron-beam treatment. Journal of Physics: Conference Series, 2019, 1393, 012141.	0.4	1
100	Additive manufactured VT6 titanium alloy surface modification by electron-ion-plasma methods. Journal of Physics: Conference Series, 2019, 1393, 012142.	0.4	0
101	Formation of Structure and Properties of Silumin on Electron-Beam Processing. Journal of Surface Investigation, 2019, 13, 1040-1044.	0.5	1
102	Application of Ti-Al powder cathodes for vacuum-arc synthesis of nitride coatings. AIP Conference Proceedings, 2019, , .	0.4	2
103	Deformation and fracture of hypereutectic silumin samples with a surface modified with an intense pulsed electron beam. AIP Conference Proceedings, 2019, , .	0.4	0
104	Effect of electron beam irradiation on structural phase transformations of zirconia-based composite reinforced by alumina nanofibers and carbon nanotubes. Journal of Physics: Conference Series, 2019, 1393, 012106.	0.4	7
105	Structure and mechanical characteristics of the hypereutectic silumin subjected to pulsed electron beam treatment. IOP Conference Series: Materials Science and Engineering, 2019, 597, 012060.	0.6	1
106	Variation in the Local Material Temperature During Electron Beam Treatment and its Influence on the Modified Layer Properties. Russian Physics Journal, 2019, 62, 1139-1146.	0.4	5
107	The Structure and Properties of a Weld-Deposited Layer onto Steel Hardox 450 Using a Boron-Containing Wire. Steel in Translation, 2019, 49, 510-516.	0.3	0
108	Complex Electron-Ion-Plasma Processing of Aluminum Surface in a Single Vacuum Cycle. Russian Physics Journal, 2019, 62, 1161-1170.	0.4	17

#	Article	IF	CITATIONS
109	Multilevel hierarchical structure of silumin subjected to multicycle surface alloying. AIP Conference Proceedings, 2019, , .	0.4	0
110	Model of nanostructure formation in Al–Si alloy at electron beam treatment. Materials Research Express, 2019, 6, 026540.	1.6	17
111	Structure and properties of layer, surfaced on HARDOX 450 steel by boron containing wire. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2019, 62, 613-620.	0.3	0
112	Aluminum surface modification by electron-ion-plasma methods. MATEC Web of Conferences, 2018, 143, 03007.	0.2	0
113	Physical Nature of Structure and Properties Degradation of Rail Surface after Long Term Operation. Journal of Metastable and Nanocrystalline Materials, 2018, 30, 39-45.	0.1	1
114	Contributions of Various Mechanisms to the Hardening of Differentially Quenched Rails during Long-Term Operation. Russian Metallurgy (Metally), 2018, 2018, 985-989.	0.5	4
115	Strain Hardening of Bainitic and Martensitic Steel in Compression. Steel in Translation, 2018, 48, 631-636.	0.3	2
116	Gradient structure formation in the surface layer of AK10M2N silumin by electron beam treatment. AIP Conference Proceedings, 2018, , .	0.4	0
117	Influence of irradiation with a high-intensity pulsed electron beam on mechanical properties and structural states of coatings formed by plasma spraying. Journal of Physics: Conference Series, 2018, 1115, 032038.	0.4	1
118	Redistribution of Carbon Atoms in Differentially Quenched Rail on Prolonged Operation. Steel in Translation, 2018, 48, 352-356.	0.3	0
119	Structure of high-chromium steel treated by a microsecond (50–450 μs) low-energy electron beam. Journal of Physics: Conference Series, 2018, 1115, 032029.	0.4	0
120	Surface alloying of high-chromium steel: structure and properties. Journal of Physics: Conference Series, 2018, 1115, 032030.	0.4	0
121	Formations of wear-resistant extended layers by combined electron-ion-plasma treatment on the surface of aluminium. Journal of Physics: Conference Series, 2018, 1115, 032039.	0.4	0
122	Surface structure and properties of high-chromium steel irradiated with a submillisecond pulsed electron beam. Journal of Physics: Conference Series, 2018, 1115, 032064.	0.4	0
123	Structure and Phase Composition of a Ti Film–Al Substrate System Irradiated with an Intense Pulsed Electron Beam. Key Engineering Materials, 2018, 781, 101-107.	0.4	0
124	Modification of Hypereutectic Silumin by Ion-Electron-Plasma Method. Key Engineering Materials, 2018, 769, 54-59.	0.4	2
125	Structure and Phase Evolution in a SiC Ceramic Surface Layer During Electron-Beam Treatment. Refractories and Industrial Ceramics, 2018, 59, 296-300.	0.6	1
126	Multilevel hierarchical structure formed in the film (Ti)/substrate (SiC-ceramics) system under irradiation by an intense pulsed electron beam. AIP Conference Proceedings, 2018, , .	0.4	6

#	Article	IF	CITATIONS
127	High Chromium Steel Modification by the Intense Discrete Electron Beam: Structure and Properties. Key Engineering Materials, 2018, 781, 64-69.	0.4	2
128	Aluminum surface modification by electron-ion-plasma methods. MATEC Web of Conferences, 2018, 143, 03007.	0.2	1
129	Complex beam-plasma surface treatment of high-chromium steel. Journal of Physics: Conference Series, 2018, 1115, 032031.	0.4	2
130	Hypereutectic silumin modification by ion-electron-plasma method. Journal of Physics: Conference Series, 2018, 1115, 032054.	0.4	0
131	Multicycle Surface Alloying of Aluminum with Titanium: Structure and Properties. Key Engineering Materials, 2018, 781, 131-136.	0.4	1
132	Stages and Fracture Mechanisms of Lamellar Pearlite of 100-m-Long Differentially Hardened Rails Under Long-Term Operation Conditions. Acta Metallurgica Sinica (English Letters), 2018, 31, 1356-1360.	2.9	1
133	Influence of High Energy Impact on the Structural-Phase State and Tribological Properties of the Surface Layer of Metal-Ceramic Composite Materials. Journal of Surface Investigation, 2018, 12, 485-491.	0.5	2
134	Steel surface TiCrN, TiMoNcoatings structural phase state change features after low-energy alpha particles irradiation. IOP Conference Series: Materials Science and Engineering, 2018, 289, 012010.	0.6	6
135	Gradient Structure Generated in Hardox 450 Steel with Built-Up Layer. Inorganic Materials: Applied Research, 2018, 9, 427-432.	0.5	1
136	Gradient Structure of the Layer Applied to Hardox 450 Steel by Fe–C–Cr–Nb–W Powder Wire after Electron-Beam Treatment. Steel in Translation, 2018, 48, 229-232.	0.3	0
137	Multilayer structure of Al-Si alloy after electro-explosion alloying with yttrium oxide powder. Materials Research Express, 2018, 5, 116520.	1.6	6
138	Transformation of Carbides in Prolonged Rail Operation. Steel in Translation, 2018, 48, 97-103.	0.3	0
139	Phase Composition and Defect Substructure of Strengthening Layer Surfaced on Low Alloyed Steel. Journal of Metastable and Nanocrystalline Materials, 2018, 30, 28-33.	0.1	0
140	Rail Strengthening Nature in the Course of Long-Term Operation. Inorganic Materials: Applied Research, 2018, 9, 26-31.	0.5	1
141	Structure and properties changes of Al-Si alloy treated by pulsed electron beam. Materials Letters, 2018, 229, 377-380.	2.6	41
142	Structure and Properties of the Surface Layer of B4C Ceramic Treated with an Intense Electron Beam. Inorganic Materials: Applied Research, 2018, 9, 437-441.	0.5	5
143	Modification of Structure and Surface Properties of Hypoeutectic Silumin by Intense Pulse Electron Beams. Progress in Physics of Metals, 2018, 19, 195-222.	1.5	31
144	REDISTRIBUTION OF CARBON ATOMS IN DIFFERENTIALLY CHARGED RAILS FOR LONG-TERM OPERATION. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2018, 61, 454-459.	0.3	3

#	Article	IF	CITATIONS
145	Degradation of structure and properties of rail surface layer at long-term operation. Materials Science and Technology, 2017, 33, 1473-1478.	1.6	7
146	Equipment and processes of vacuum electron-ion plasma surface engineering. Vacuum, 2017, 143, 464-472.	3.5	58
147	Electron-ion-plasma modification of the structure and properties of commercial steels. IOP Conference Series: Materials Science and Engineering, 2017, 168, 012070.	0.6	3
148	Structure and properties of a low-carbon steel surface modified by electric arc surfacing. Journal of Surface Investigation, 2017, 11, 1050-1055.	0.5	0
149	Structural phase states and properties of the layer surfaced on low-carbon steel with Fe‒C‒Cr‒Nb‒W powder-core wire followed by electron-beam processing. Journal of Surface Investigation, 2017, 11, 933-939.	0.5	1
150	Modification of the structure and properties of commercially pure titanium through nitriding and subsequent TiN coating deposition in a single vacuum cycle. Journal of Physics: Conference Series, 2017, 857, 012013.	0.4	1
151	Surface Alloying of SUS 321 Chromium-Nickel Steel by an Electron-Plasma Process. Russian Physics Journal, 2017, 60, 515-521.	0.4	5
152	Mechanical Properties and Structure of the Hypereutectic Silumin Treated by an Electron Beam. Key Engineering Materials, 2017, 743, 146-150.	0.4	2
153	Nanohardness of wear-resistant surfaces after electron-beam treatment. Steel in Translation, 2017, 47, 245-249.	0.3	1
154	Nanoscale localization of plastic deformation in steel with a bainitic structure. Russian Metallurgy (Metally), 2017, 2017, 283-286.	0.5	1
155	Redistribution of carbon in the deformation of steel with bainite and martensite structures. Steel in Translation, 2017, 47, 445-448.	0.3	1
156	An Electron-Microscopy Analysis of the Gradient Structure Formed in Titanium During Deposition of a Hard Coating. Russian Physics Journal, 2017, 60, 875-883.	0.4	3
157	Formation and evolution of the structure and phase composition of stainless steel during electron-beam treatment and multiple-cycle fatigue. Inorganic Materials: Applied Research, 2017, 8, 521-527.	0.5	0
158	Structure and properties of strengthening layer on Hardox 450 steel. Materials Science and Technology, 2017, 33, 2040-2045.	1.6	8
159	Phase Transformations in the Film-Substrate System Irradiated with e-beam. Russian Physics Journal, 2017, 60, 175-180.	0.4	9
160	Phase composition and defect substructure of double surfacing, formed with V–Cr–Nb–W powder wire on steel. Inorganic Materials: Applied Research, 2017, 8, 313-317.	0.5	0
161	Elemental and phase composition of TiB2–Mo coating sprayed on a steel by electro-explosive method. Inorganic Materials: Applied Research, 2017, 8, 423-427.	0.5	0
162	Modification of the Structural-Phase State of the Surface Layer of a Cermet Composite Under Electron Beam Irradiation in Inert Gas Plasmas. Russian Physics Journal, 2017, 59, 2114-2121.	0.4	11

#	Article	IF	CITATIONS
163	Combined surface modification of commercial aluminum. IOP Conference Series: Materials Science and Engineering, 2017, 168, 012043.	0.6	0
164	Structural and Phase Changes in the System Al-Si-Ti-B, Synthesized Using the Electron-Ion-Plasma Treatment Method. IOP Conference Series: Materials Science and Engineering, 2017, 189, 012031.	0.6	0
165	Structure and Properties of VT6 Alloy Obtained by Layered Selective Sintering of a Powder. Russian Physics Journal, 2017, 60, 1367-1372.	0.4	3
166	Surface modification of additive manufactured metal products by an intense electron beam. Journal of Physics: Conference Series, 2017, 927, 012066.	0.4	0
167	Structure and properties of Hardox 450 steel with arc welded coatings. AIP Conference Proceedings, 2017, , .	0.4	1
168	Electron-beam modification of a surface layer deposited on low-carbon steel by means of arc spraying. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 1353-1359.	0.6	3
169	Phase transformations during high-speed heat treatment of the system "carbide (M23C6)/(α-Fe) matrix― AIP Conference Proceedings, 2017, , .	0.4	0
170	Structure changes in the surface layers of Ti-6Al-4V titanium alloy under electron beam treatment. AIP Conference Proceedings, 2017, , .	0.4	2
171	Evolution of the structure and the phase composition of a bainitic structural steel during plastic deformation. Russian Metallurgy (Metally), 2017, 2017, 871-873.	0.5	1
172	Variations in defect substructure and fracture surface of commercially pure aluminum under creep in weak magnetic field. Chinese Physics B, 2017, 26, 126203.	1.4	5
173	Analysis of Strain Hardening Mechanisms for Steel with a Bainitic Structure. Metallurgist, 2017, 61, 303-310.	0.6	0
174	Physical nature of surface structure degradation in long term operated rails. AIP Conference Proceedings, 2017, , .	0.4	6
175	Degradation of nitride coatings in low-pressure gas discharge plasma. AIP Conference Proceedings, 2017, , .	0.4	0
176	Metallographic study on eutectic silumin. AlP Conference Proceedings, 2017, , .	0.4	0
177	Gradient structure formed in commercially pure titanium irradiated with a pulsed electron beam. AIP Conference Proceedings, 2017, , .	0.4	1
178	Structure and properties of the layer deposited onto a low-carbon steel and then irradiated by an electron beam. Russian Metallurgy (Metally), 2017, 2017, 579-584.	0.5	0
179	Intense Pulsed Electron Beam Modification of Surface Layer Facing Formed on Hardox 450 Steel by Electrocontact Method. Journal of Surface Investigation, 2017, 11, 1342-1347.	0.5	1
180	Synthesising nanostructural wear-resistant coatings on martensite steel by welding methods. International Journal of Nanotechnology, 2017, 14, 627.	0.2	1

#	Article	IF	CITATIONS
181	Surface of high-chromium steel modified by an intense pulsed electron beam. Steel in Translation, 2017, 47, 669-674.	0.3	5
182	Structure and properties of H-beams after accelerated water cooling. Steel in Translation, 2017, 47, 369-373.	0.3	1
183	Structure and Properties of the Wear-Resistant Facing Modified by Electron-Beam Processing. Progress in Physics of Metals, 2017, 18, 111-139.	1.5	2
184	COMPLEX ELECTRON-ION PLASMA TREATMENT OF TITANIUM: METHODS, STRUCTURE, PROPERTIES. High Temperature Material Processes, 2017, 21, 53-64.	0.6	13
185	Structure of titanium alloy, modified by electron beams and destroyed during fatigue. Letters on Materials, 2017, 7, 266-271.	0.7	10
186	Formation of mechanical properties of low alloy steel surface under thermomechanical treatment. Metal Working and Material Science, 2017, , 38-44.	0.3	0
187	Nanostructuring and Physical Properties of Metal-Ceramic Composites With a Different Content the Ceramic Components. IOP Conference Series: Materials Science and Engineering, 2016, 125, 012008.	0.6	1
188	Aluminum surface layer strengthening using intense pulsed beam radiation of substrate film system. IOP Conference Series: Materials Science and Engineering, 2016, 156, 012019.	0.6	0
189	Regularities of bainitic steel deformation transition. IOP Conference Series: Materials Science and Engineering, 2016, 150, 012025.	0.6	1
190	A study on structure and tribological properties of the electroerosion coating Mo-Ni-Cu, formed by the mixed method on copper. IOP Conference Series: Materials Science and Engineering, 2016, 150, 012040.	0.6	1
191	Electro-Explosive Doping of VT6 Titanium Alloy Surface by Boron Carbide. IOP Conference Series: Materials Science and Engineering, 2016, 150, 012042.	0.6	3
192	Nanostructured Hardening of Hard Alloys Surface Layers Through Electron Irradiation in Heavy Inert Gas Plasma Conditions. IOP Conference Series: Materials Science and Engineering, 2016, 142, 012093.	0.6	0
193	Metal ceramic alloy structure and surface layer modification during electron-ion-plasma irradiation of its surface. AIP Conference Proceedings, 2016, , .	0.4	0
194	Fatigue variation of surface properties of silumin subjected to electron-beam treatment. IOP Conference Series: Materials Science and Engineering, 2016, 110, 012012.	0.6	2
195	Formation Structural Phase Gradients in Rail Steel During Long-Term Operation. IOP Conference Series: Materials Science and Engineering, 2016, 112, 012038.	0.6	6
196	Effect of electron beam treatment on structural change in titanium alloy VT-0 at high-cycle fatigue. IOP Conference Series: Materials Science and Engineering, 2016, 150, 012037.	0.6	3
197	Structure of electroexplosive TiC–Ni composite coatings on steel after electron-beam treatment. Russian Metallurgy (Metally), 2016, 2016, 1064-1071.	0.5	4
198	Formation of the Increased Wear-Resistant Properties of Hardox 450 Steel by Deposited Coatings. IOP Conference Series: Materials Science and Engineering, 2016, 150, 012041.	0.6	1

#	Article	IF	CITATIONS
199	Structural and phase states in high-quality rail. Steel in Translation, 2016, 46, 260-263.	0.3	7
200	Phase transformations in the system Cu-Zn-Al under conditions far from equilibrium. AIP Conference Proceedings, 2016, , .	0.4	3
201	Laws of the deformation-induced structural transformation in bainitic steel. Russian Metallurgy (Metally), 2016, 2016, 365-370.	0.5	0
202	Nanophase modification of the superficial layer of cast iron during the interaction of the melt with a carbide-forming metal. AIP Conference Proceedings, 2016, , .	0.4	0
203	Structural and Phase Transformations in Ti-B ₄ C System Formed when Melting the Composition Film/Substrate by an Intense Electron Beam. Key Engineering Materials, 2016, 712, 76-80.	0.4	0
204	Nanoscale level of the deformation band formation in bainite steel. AIP Conference Proceedings, 2016,	0.4	0
205	Modification of the structure of surface layers of commercial titanium in the process of treatment by low-energy high-current electron beams. Physics of Metals and Metallography, 2016, 117, 550-561.	1.0	13
206	Optimization of aluminumand its alloys doping by ionic-beam-plasma coating. IOP Conference Series: Materials Science and Engineering, 2016, 124, 012137.	0.6	2
207	Structural Phase Transformations of the Surface Layer of SiC Ceramics Irradiated by Intense Electron Beam. Key Engineering Materials, 2016, 712, 81-86.	0.4	0
208	Increase in fatigue life of steels by electron-beam processing. Journal of Surface Investigation, 2016, 10, 83-87.	0.5	6
209	Rail strengthening in prolonged operation. Steel in Translation, 2016, 46, 405-409.	0.3	0
210	Electron-ion plasma modification of Al-based alloys. AIP Conference Proceedings, 2016, , .	0.4	2
211	Nature of the structural degradation of rail surfaces during operation. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 1483-1488.	0.6	11
212	Metallographic Examination of Forming Improved Mechanical Properties via Surfacing of Steel HARDOX 450 with Flux Cored Wire. Materials Science Forum, 2016, 870, 159-162.	0.3	5
213	An increase in fatigue service life of eutectic silumin by electron-beam treatment. Russian Journal of Non-Ferrous Metals, 2016, 57, 236-242.	0.6	6
214	Comparative Analysis of the Structure and Phase States and Defect Substructure of Bulk and Differentially Quenched Rails. Metallurgist, 2016, 60, 422-427.	0.6	1
215	Wear resistance of the surface layers of hard alloys with a multilevel structural phase state. Journal of Surface Investigation, 2016, 10, 718-722.	0.5	3
216	Combined treatment of steel, including electrospark doping and subsequent irradiation with a high-intensity electron beam. IOP Conference Series: Materials Science and Engineering, 2016, 124, 012125.	0.6	1

#	Article	IF	CITATIONS
217	Long-term operation of rail steel: Degradation of structure and properties of surface layer. Journal of Surface Investigation, 2016, 10, 1101-1105.	0.5	10
218	Formation of internal stress fields in rails during long-term operation. Russian Metallurgy (Metally), 2016, 2016, 371-374.	0.5	14
219	Fractography of Fatigue Fracture Surface in Silumin Subjected to Electron-Beam Processing. IOP Conference Series: Materials Science and Engineering, 2016, 142, 012080.	0.6	2
220	Electrospark doping of steel with tungsten. AIP Conference Proceedings, 2016, , .	0.4	0
221	The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam. AIP Conference Proceedings, 2016, , .	0.4	0
222	Formation Wear Resistant Coatings on Martensite Steel Hardox 450 by Welding Methods. IOP Conference Series: Materials Science and Engineering, 2016, 142, 012079.	0.6	2
223	Physical nature of rail strengthening in long term operation. AIP Conference Proceedings, 2016, , .	0.4	7
224	Modification of the sample's surface of hypereutectic silumin by pulsed electron beam. IOP Conference Series: Materials Science and Engineering, 2016, 124, 012138.	0.6	2
225	Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment. AIP Conference Proceedings, 2016, , .	0.4	3
226	Surface layer structure degradation of rails in prolonged operation. Journal of Surface Investigation, 2016, 10, 76-82.	0.5	11
227	Modification of the titanium film–aluminum substrate system by a high-intensity pulsed electron beam with a submillisecond duration. Journal of Surface Investigation, 2016, 10, 723-727.	0.5	2
228	Degradation of rail-steel structure and properties of the surface layer. Steel in Translation, 2016, 46, 567-570.	0.3	8
229	Structure, phase composition, and properties of the titanium surface modified by electron-ion-plasma methods. Journal of Surface Investigation, 2016, 10, 1092-1095.	0.5	1
230	Formation features of structure-phase states of Cr–Nb–C–V containing coatings on martensitic steel. Journal of Surface Investigation, 2016, 10, 1119-1124.	0.5	31
231	Modification of a hard alloy cermet structure upon pulsed electron-ion-plasma irradiation. Inorganic Materials: Applied Research, 2016, 7, 786-790.	0.5	2
232	Electric arc surfacing on low carbon steel: Structure and properties. AIP Conference Proceedings, 2016, , .	0.4	3
233	Analysis of Structure Formed in a Titanium Surface Layer Alloyed with Yttrium. Metallurgist, 2016, 59, 829-834.	0.6	5
234	Influence of hydrogen on the localization of plastic strain in low-carbon steel during electrolytic saturation. Steel in Translation, 2016, 46, 107-111.	0.3	1

#	Article	IF	CITATIONS
235	Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure. Russian Physics Journal, 2016, 58, 1557-1562.	0.4	1
236	Electron-beam processing of the hardened layer formed on Hardox 450 steel electric-wire welding system Fe-C-V-Cr-Nb-W. Letters on Materials, 2016, 6, 350-354.	0.7	4
237	INFLUENCE OF ANNEALING TEMPERATURE ON THE STRUCTURE AND PHASE COMPOSITION OF T15K6 HARD ALLOY WITH TITANIUM COATING AFTER TREATMENT BY INTENSE PULSED ELECTRON BEAMS. High Temperature Material Processes, 2016, 20, 127-138.	0.6	0
238	Degradation of Structure and Properties of Metal of Rails at the Long-Term Operation. Progress in Physics of Metals, 2016, 17, 253-296.	1.5	3
239	Formation of Structural-Phase States, Defect Substructure and Properties of a Surface of Thermomechanically Hardened Low-Carbon Steel. Progress in Physics of Metals, 2016, 17, 303-341.	1.5	4
240	Surface-alloy formation in film–substrate melting by intense pulsed electron beam. Part 1. Steel in Translation, 2015, 45, 559-563.	0.3	0
241	Wear resistance and structure–phase states in the surface of the welding-deposited coating on steel. Russian Metallurgy (Metally), 2015, 2015, 1124-1128.	0.5	1
242	Structure of electroexplosive TiB2–Ni composite coatings after electron beam processing. Inorganic Materials: Applied Research, 2015, 6, 536-541.	0.5	6
243	Increasing the fatigue life of steel and alloys by electron-beam treatment. Steel in Translation, 2015, 45, 322-325.	0.3	1
244	Effect of xenon on the structural phase state of the surface layer of cemented carbide under pulsed electron-beam irradiation. AlP Conference Proceedings, 2015, , .	0.4	0
245	The deformation behavior of commercially pure titanium subjected to electron beam treatment. AIP Conference Proceedings, 2015, , .	0.4	0
246	Evolution of the structure and phase states of rails in prolonged operation. Steel in Translation, 2015, 45, 254-257.	0.3	15
247	Structure-phase states and wear resistance of deposition surface formed on steel by electric arc method. IOP Conference Series: Materials Science and Engineering, 2015, 71, 012066.	0.6	0
248	The role of electro-explosion alloying with titanium diboride and treatment with pulsed electron beam in the surface modification of VT6 alloy. AIP Conference Proceedings, 2015, , .	0.4	1
249	Structure of the molybdenum–carbon–copper composite coatings produced by electroexplosive spraying followed by electron-beam treatment. Russian Metallurgy (Metally), 2015, 2015, 1134-1138.	0.5	2
250	Carbon distribution in bainitic steel subjected to deformation. , 2015, , .		1
251	Structure-phase states evolution in rails during a long operation. AIP Conference Proceedings, 2015, , .	0.4	5
252	Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue. AIP Conference Proceedings, 2015, , .	0.4	10

#	Article	IF	CITATIONS
253	Structure–phase state of the surface layers in rails subjected to differential hardening. Russian Metallurgy (Metally), 2015, 2015, 1094-1097.	0.5	1
254	Structural-phase states and tribological properties of electroexplosive composite coatings on copper after electron-beam treatment. Journal of Surface Investigation, 2015, 9, 699-705.	0.5	1
255	Structure of the surface layer of a wear-resistant coating after treatment with a high-intensity electron beam. Journal of Surface Investigation, 2015, 9, 934-938.	0.5	4
256	Surface-alloy formation in film–substrate melting by intense pulsed electron beam. Part 2. Steel in Translation, 2015, 45, 754-758.	0.3	1
257	Fatigue life of silumin treated with a high-intensity pulsed electron beam. Journal of Surface Investigation, 2015, 9, 1056-1059.	0.5	27
258	Regularities of varying the dislocation substructure of copper under creep in the magnetic field. Russian Journal of Non-Ferrous Metals, 2015, 56, 441-448.	0.6	3
259	Numerical Simulation of the Temperature Field of Silumin Irradiated by a High-Intensity Electron Beam. Russian Physics Journal, 2015, 58, 478-484.	0.4	9
260	Fatigue life of silumin irradiated by high intensity pulsed electron beam. IOP Conference Series: Materials Science and Engineering, 2015, 91, 012029.	0.6	3
261	Investigation of defect copper substructure disrupted in creep condition under the action of magnetic field. IOP Conference Series: Materials Science and Engineering, 2015, 91, 012030.	0.6	0
262	Modification of the surface layer of the system coating (TiCuN)/substrate (A7) by an intensive electron beam. IOP Conference Series: Materials Science and Engineering, 2015, 81, 012009.	0.6	2
263	Fractography of the fatigue fracture surface of silumin irradiated by high-intensity pulsed electron beam. IOP Conference Series: Materials Science and Engineering, 2015, 81, 012011.	0.6	6
264	Structure and properties of commercially pure titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator. Journal of Physics: Conference Series, 2015, 652, 012013.	0.4	1
265	Surface structure of commercially pure VT1-0 titanium irradiated by an intense pulsed electron beam. Journal of Physics: Conference Series, 2015, 652, 012014.	0.4	0
266	Features of formation of structural-phase states on the surface of titanium alloy VT1-0 after electron-ion-plasma treatment. Journal of Physics: Conference Series, 2015, 652, 012015.	0.4	0
267	Electro-explosive alloying of VT6 alloy surface by boron carbide powder with the subsequent electron-beam treatment. Journal of Physics: Conference Series, 2015, 652, 012047.	0.4	0
268	Structure-phase states of silumin surface layer after electron beam and high cycle fatigue. Journal of Physics: Conference Series, 2015, 652, 012028.	0.4	2
269	Modification of the titanium alloy surface in electroexplosive alloying with boron carbide and subsequent electron-beam treatment. AIP Conference Proceedings, 2015, , .	0.4	0
270	Electron-beam modification of coating – aluminum substrate systems. IOP Conference Series: Materials Science and Engineering, 2015, 71, 012062.	0.6	1

#	Article	IF	CITATIONS
271	ELECTRON-ION-PLASMA METHODS OF ALLOYING STEEL BY COPPER. High Temperature Material Processes, 2015, 19, 319-334.	0.6	1
272	Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment. AIP Conference Proceedings, 2015, , .	0.4	0
273	Grain structure and strength of a plastically deformed Ni3Al intermetallic compound. Doklady Physics, 2015, 60, 440-441.	0.7	0
274	Formation of a multigrain structure and its influence on the strength and plasticity of the Ni3Al intermetallic compound. Physics of the Solid State, 2015, 57, 1293-1299.	0.6	7
275	Evolution of Al–19·4Si alloy surface structure after electron beam treatment and high cycle fatigue. Materials Science and Technology, 2015, 31, 1523-1529.	1.6	27
276	Modification of a Coating (Tin) – Substrate (Vt1-0) System with High-Intensity Pulsed Electron Beams. Russian Physics Journal, 2015, 58, 366-372.	0.4	8
277	Structure and Properties of a Coating (TiCuN) – Substrate (Ð7) System Modified with a High-Intenisty Electron Beam. Russian Physics Journal, 2015, 58, 373-379.	0.4	10
278	Effect of Nanosize Structures on Physical Characteristics of Hard Metal Subsurface. Rare Metal Materials and Engineering, 2015, 44, 1-6.	0.8	5
279	Generation of low-temperature gas discharge plasma in large vacuum volumes for plasma chemical processes. Russian Journal of General Chemistry, 2015, 85, 1326-1338.	0.8	37
280	Effect of the magnetic field on the surface morphology of copper upon creep fracture. Journal of Surface Investigation, 2015, 9, 410-414.	0.5	10
281	Formation of a microcomposite structure in the surface layer of yttrium-doped titanium. Journal of Surface Investigation, 2015, 9, 377-382.	0.5	4
282	Structural evolution of silumin treated with a high-intensity pulse electron beam and subsequent fatigue loading up to failure. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 1169-1172.	0.6	9
283	Microstructure, heat transfer, and melting of the layers of hard alloy containing titanium and tungsten carbides in conditions of high-power pulsed treatment. Russian Journal of Non-Ferrous Metals, 2015, 56, 345-352.	0.6	2
284	Formation of the surface alloys by high-intensity pulsed electron beam irradiation of the coating/substrate system. IOP Conference Series: Materials Science and Engineering, 2015, 81, 012039.	0.6	0
285	Nanostructural States and Properties of the Surfacing Formed on Steel by a Cored Wire. Russian Physics Journal, 2015, 58, 471-477.	0.4	8
286	Steel fatigue life extension by pulsed electron beam irradiation. Journal of Surface Investigation, 2015, 9, 599-603.	0.5	1
287	Structure gradient in wear-resistant coatings on steel. Steel in Translation, 2015, 45, 120-124.	0.3	10
288	Regularities of Formation of Structural–Phase States on a Surface of Metals and Alloys at an Electroexplosive Alloying. Progress in Physics of Metals, 2015, 16, 119-157.	1.5	8

#	Article	IF	CITATIONS
289	Structure, Phase Composition and Properties of Surface Layers of the Titanium after Electroexplosive Doping with Yttrium and Electron-Beam Processing. Progress in Physics of Metals, 2015, 16, 175-227.	1.5	8
290	MODIFICATION OF HYPEREUTECTIC SILUMIN SURFACE LAYER BY A HIGH-INTENSITY PULSE ELECTRON BEAM. High Temperature Material Processes, 2015, 19, 85-91.	0.6	3
291	EVOLUTION OF RAIL STRUCTURE-PHASE STATES AT CONTINUOUS SERVICE. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2015, 58, 262.	0.3	4
292	FORMATION OF SURFACE ALLOYS AT MELTING OF FILM-SUBSTRATE SYSTEM BY HIGH-INTENSITY PULSED ELECTRON BEAM. REPORT 1. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2015, 58, 583.	0.3	1
293	STEEL 45 SURFACE MODIFICATION BY A COMBINED ELECTRON-ION-PLASMA METHOD. High Temperature Material Processes, 2015, 19, 29-36.	0.6	2
294	DEPTH STRUCTURE OF WEAR RESISTANCE COATING ON STEEL OBTAINED BY ELECTRIC ARC METHOD. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2015, 58, 121.	0.3	2
295	Work Hardening of Steel with a Bainite Structure. Progress in Physics of Metals, 2015, 16, 299-328.	1.5	3
296	Increase of a Fatigue Life of a Silumin by Electron-Beam Processing. Progress in Physics of Metals, 2015, 16, 265-297.	1.5	8
297	Structure and properties of surface alloys synthesized by pulsed electron-beam treatment of a coating-substrate system. Steel in Translation, 2014, 44, 573-577.	0.3	2
298	Structure and properties of surface layers obtained due to titanium-surface alloying by yttrium via combined electron-ion-plasma treatment. Journal of Surface Investigation, 2014, 8, 1286-1290.	0.5	4
299	Structural and phase states of bulk-quenched rail and differentially quenched rail. Steel in Translation, 2014, 44, 553-557.	0.3	1
300	Structural-phase states and properties of coatings welded onto steel surfaces using powder wires. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 1015-1021.	0.6	24
301	Formation of Surface Layers in Cu-C System. Advanced Materials Research, 2014, 1013, 224-228.	0.3	7
302	Analysis of structure-phase states in-a-bulk hardened and a head-hardened rails. , 2014, , .		2
303	Analysis of structure and phase composition of rails subjected to differential hardening at different regimes. , 2014, , .		0
304	Structural-phase states and wear resistance of surface formed on steel by surfacing. AIP Conference Proceedings, 2014, , .	0.4	2
305	Surface modification of structural materials by low-energy high-current pulsed electron beam treatment. AIP Conference Proceedings, 2014, , .	0.4	3
306	Morphology of the surface of technically pure titanium VT1-0 after electroexplosive carbonization with a weighed zirconium oxide powder sample and electron beam treatment. , 2014, , .		1

#	Article	IF	CITATIONS
307	Structural state scale-dependent physical characteristics and endurance of cermet composite for cutting metal. , 2014, , .		0
308	Bulk nanostructuring intermetallic composite material. , 2014, , .		1
309	Surface hardening alloy VT6 of electric explosion and by electron beam. , 2014, , .		0
310	Structure, phase composition, and defect substructure of differentially quenched rail. Steel in Translation, 2014, 44, 883-885.	0.3	4
311	Dislocation substructures and internal stress fields in bulk- and differentially quenched rails. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 981-987.	0.6	0
312	Combined electron-ion-plasma doping of a titanium surface with yttrium: Analyzing structure and properties. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 1183-1187.	0.6	4
313	Structure and Properties of Surface Alloys in Ti-Y System. Advanced Materials Research, 2014, 1013, 229-233.	0.3	1
314	Chromium Alloyed Steel Nitriding within Close-To-Critical Temperature Range. Advanced Materials Research, 2014, 1013, 146-152.	0.3	1
315	Surface gradient structure-phase states formation under differentiated quenching of 100 meter rails. Journal of Surface Investigation, 2014, 8, 1345-1350.	0.5	1
316	Pulsed-Electron-Beam Processing of Materials for Medical Applications. Russian Physics Journal, 2014, 56, 1150-1155.	0.4	6
317	Structure of low-carbon steel sheet after scale removal. Steel in Translation, 2014, 44, 264-267.	0.3	2
318	Evolution of the structure and phase composition of low-carbon ferrite steel under conditions of hydrogen saturation and deformation. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 237-240.	0.6	2
319	Modification of the surface of the VT6 alloy by plasma of electric explosion of a conducting material and by electron beam. Russian Journal of Non-Ferrous Metals, 2014, 55, 51-56.	0.6	6
320	Structurally-Phase States of Surface Titanium VT1-0 Layers After Electroexplosive Carbonization with a Weighed Zirconium Oxide Powder Sample and Electron Beam Treatment. Russian Physics Journal, 2014, 57, 252-258.	0.4	4
321	Structure, Phase Composition, and Defective Substructure of Rails of the Highest Quality Grade. Russian Physics Journal, 2014, 57, 259-265.	0.4	0
322	Formation of gradients of structure, phase composition, and dislocation substructure in differentially hardened rails. Nanotechnologies in Russia, 2014, 9, 288-292.	0.7	4
323	Structure and Properties of the Wear-Resistant Coatings Fused on Steel with Flux Cored Wires by an Electric Arc Method. Progress in Physics of Metals, 2014, 15, 213-234.	1.5	11
324	COMBINED MODIFICATION OF ALUMINUM BY ELECTRON-ION-PLASMA METHODS. High Temperature Material Processes, 2014, 18, 311-317.	0.6	9

#	Article	IF	CITATIONS
325	THE EFFECT OF SIZE STABILIZATION OF CARBON STEELS AUSTENITE. High Temperature Material Processes, 2014, 18, 319-328.	0.6	0
326	ELECTROEXPLOSIVE DOPING OF TITANIUM ALLOY BY BORON CARBIDE AND SUBSEQUENT ELECTRON BEAM PROCESSING. High Temperature Material Processes, 2014, 18, 281-290.	0.6	1
327	Formation of Structure, Phase Composition and Faulty Substructure in the Bulk- and Differentially-Hard-Tempered Rails. Progress in Physics of Metals, 2014, 15, 1-33.	1.5	5
328	On the fatigue strength of grade 20Cr13 hardened steel modified by an electron beam. Journal of Surface Investigation, 2013, 7, 90-93.	0.5	11
329	Influence of Features of Interphase Boundaries on Mechanical Properties and Fracture Pattern in Metal–Ceramic Composites. Journal of Materials Science and Technology, 2013, 29, 1025-1034.	10.7	40
330	Increase in the fatigue durability of stainless steel by electron-beam surface treatment. Journal of Surface Investigation, 2013, 7, 94-98.	0.5	25
331	Microstructure and phase composition of a zirconium coating-silicon substrate system treated using high-current electron beams. Journal of Surface Investigation, 2013, 7, 248-253.	0.5	2
332	Characterization of Ti-Al surface alloy formed by pulsed electron-beam melting of film-substrate system. Journal of Physics: Conference Series, 2013, 416, 012007.	0.4	3
333	Evolution of the phase composition and defect substructure of rail steel subjected to high-intensity electron-beam treatment. Journal of Surface Investigation, 2013, 7, 990-995.	0.5	26
334	The effect of electron beam treatment on hydrogen sorption ability of commercially pure titanium. Applied Surface Science, 2013, 284, 750-756.	6.1	25
335	Evolution of the phase composition and defect substructure in the surface layer of rail steel under fatigue. Steel in Translation, 2013, 43, 724-727.	0.3	6
336	Modification of Structure and Properties of Titanium Surfaces During Formation of Silicides and Borides Initiated by High-Energy Treatment. Russian Physics Journal, 2013, 56, 914-919.	0.4	8
337	Wear 110Γ13 of steel with ultrasound-induced nanostructuring of the surface layer part 2. Structural research. Steel in Translation, 2013, 43, 485-490.	0.3	0
338	Study of microstructure of surface layers of low-carbon steel after turning and ultrasonic finishing. Physics of Metals and Metallography, 2013, 114, 41-53.	1.0	14
339	MAX phases in titanium and aluminum alloys. Steel in Translation, 2013, 43, 356-359.	0.3	0
340	Surface layer of commercially pure VT1-0 titanium after electric-explosion alloying and subsequent treatment by a high-intensity pulsed electron beam. Steel in Translation, 2013, 43, 798-802.	0.3	3
341	The Structure and Properties of Hard Metals Irradiated by High-Energy Electron Beam. Advanced Materials Research, 2013, 872, 214-218.	0.3	4
342	Phase Composition and Defect Substructure of the Zirconia Nanopowder Modified by the Powerful Ultrasonic Assistance. Advanced Materials Research, 2013, 872, 180-183.	0.3	1

#	Article	IF	CITATIONS
343	Scale Levels of the Structure–Phase States and Fatigue Life of a Rail Steel after Electron-Beam Treatment. Progress in Physics of Metals, 2013, 14, 67-83.	1.5	12
344	MODIFICATION OF THE STRUCTURE AND PHASE COMPOSITION OF STRUCTURAL STEEL BY A MICROSECOND e-BEAM. High Temperature Material Processes, 2013, 17, 221-226.	0.6	2
345	THE STRUCTURE OF THE SURFACE ALLOY FORMED AS A RESULT OF HIGH-SPEED MELTING OF THE FILM (TiCu)/SUBSTRATE (AI) SYSTEM. High Temperature Material Processes, 2013, 17, 241-256.	0.6	12
346	Nanocrystalline nitride coatings deposited by vacuum arc plasma-assisted method. Journal of Physics: Conference Series, 2012, 370, 012021.	0.4	1
347	Arc plasma-assisted deposition of nanocrystalline coatings. , 2012, , .		0
348	Electron-beam surface treatment of alloys based on titanium, modified by plasma from an electrical explosion of conducting material. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76, 1246-1252.	0.6	4
349	Formation of zirconium-titanium solid solutions under the action of compression plasma flows and high-current electron beams. Inorganic Materials: Applied Research, 2012, 3, 365-370.	0.5	8
350	Superhard nanocrystalline Ti–Cu–N coatings deposited by vacuum arc evaporation of a sintered cathode. Surface and Coatings Technology, 2012, 207, 430-434.	4.8	54
351	Formation of dislocation-free nanostructures in metals on electroexplosive alloying. Steel in Translation, 2012, 42, 820-822.	0.3	2
352	Fatigue failure of stainless steel after electron-beam treatment. Steel in Translation, 2012, 42, 486-488.	0.3	15
353	Evolution of the structural and phase states in a plasma-hardened iron roller. Steel in Translation, 2012, 42, 489-494.	0.3	2
354	Formation of nanocomposite layers at the surface of VT1-0 titanium in electroexplosive carburization and electron-beam treatment. Steel in Translation, 2012, 42, 499-501.	0.3	8
355	Nanocrystalline structure and fatigue life of stainless steel. Steel in Translation, 2012, 42, 316-318.	0.3	2
356	Structure and phase composition of a chromium-silicon system modified by high-current electron beams. Journal of Surface Investigation, 2012, 6, 67-72.	0.5	5
357	Structure and properties of the surface alloy formed by irradiating a film/substrate system with a high-intensity electron beam. Russian Physics Journal, 2012, 54, 1024-1033.	0.4	3
358	Formation of structure-phase states and dislocation substructures during thermomechanical hardening of Fe–0.09C–2Mn–1Si steel. Russian Physics Journal, 2012, 54, 1034-1045.	0.4	1
359	Structure, phase composition and mechanical properties of hard alloy treated by intense pulsed electron beams. Surface and Coatings Technology, 2012, 206, 2972-2976.	4.8	55
360	Regularities of the formation and the role of secondary structures in the improvement of the wear resistance of commercially pure titanium VT1-0. Journal of Friction and Wear, 2012, 33, 184-189.	0.5	2

#	Article	IF	CITATIONS
361	Structural phase changes in a titanium-silicon system modified by high-current electron beams and compression plasma flows. Journal of Surface Investigation, 2012, 6, 296-302.	0.5	4
362	Phase transformations of carbon under extreme energy action. Technical Physics, 2012, 57, 198-202.	0.7	18
363	Fabrication of reinforcing nanostructured coatings by electron beam processing. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48, 221-232.	1.1	4
364	THE EVOLUTION OF THE GRAIN STRUCTURE OF THE SURFACE LAYER OF STEEL 20H23N18 SUBJECTED TO ELECTRON-BEAM PROCESSING AND HIGH-CYCLE OF LOADING. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2012, 55, 56-60.	0.3	2
365	Synthesis of Ti3Al and TiAl based surface alloys by pulsed electron-beam melting of Al(film)/Ti(substrate) system. Technical Physics Letters, 2011, 37, 226-229.	0.7	31
366	Development of a new class of coatings by double electron-beam surfacing. Inorganic Materials: Applied Research, 2011, 2, 531-539.	0.5	7
367	Gradient structural phase states formed in steel 08Kh18N10T in the course of high-cycle fatigue to failure. Physics of Metals and Metallography, 2011, 112, 81-89.	1.0	6
368	Effect of an electric potential on the formation of a dislocation structure during creep of aluminum. Russian Metallurgy (Metally), 2011, 2011, 423-428.	0.5	0
369	Structure-phase transformation in surface layers of hard alloy as a result of action of high-current electron beams. Journal of Surface Investigation, 2011, 5, 350-357.	0.5	6
370	Formation of surface gradient structural-phase states under electron-beam treatment of stainless steel. Journal of Surface Investigation, 2011, 5, 974-978.	0.5	38
371	Evolution of the structural-phase state of the surface of plasma-hardened rollers. Steel in Translation, 2011, 41, 102-104.	0.3	2
372	Formation of gradient structure-phase states in thermomechanical hardening. Steel in Translation, 2011, 41, 283-286.	0.3	6
373	Electroexplosive boron-copper plating and subsequent electron-beam treatment of steel 45. Steel in Translation, 2011, 41, 469-474.	0.3	10
374	Multicyclic fatigue of stainless steel treated by a high-intensity electron beam: surface layer structure. Russian Physics Journal, 2011, 54, 575-583.	0.4	31
375	Dislocation Substructure Gradient Formation in Aluminum by Creep under Weak Potential. Arabian Journal for Science and Engineering, 2011, 36, 649-653.	1.1	1
376	Plasma Sprayed Metal-Ceramic Coatings and Modification of Their Structure with Pulsed Electron Beam Irradiation. Journal of Thermal Spray Technology, 2011, 20, 927-938.	3.1	10
377	Gradient Structural-Phase States in the Thermostrengthened Low-Carbon Steel Reinforcement. Materials and Manufacturing Processes, 2011, 26, 144-146.	4.7	4
378	Formation of stress field gradients during the high cycle fatigue of an austenitic corrosion-resistant steel. Russian Metallurgy (Metally), 2010, 2010, 268-272.	0.5	0

#	Article	IF	CITATIONS
379	Melt nonstoichiometry and defect structure of ZnGeP2 crystals. Crystallography Reports, 2010, 55, 65-70.	0.6	11
380	Evolution of the structural and phase states in hardened cast-iron rollers: Part 1. Steel in Translation, 2010, 40, 322-324.	0.3	1
381	Formation of nanophases in electroexplosive alloying with aluminum and boron and electron-beam treatment of titanium surfaces. Steel in Translation, 2010, 40, 723-728.	0.3	3
382	Ways of the dislocation substructure evolution in austenite steel under low and multicycle fatigue. Procedia Engineering, 2010, 2, 83-90.	1.2	6
383	Dislocation substructure evolution on Al creep under the action of the weak electric potential. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 858-861.	5.6	26
384	Evolution of dislocation substructures in fatigue loaded and failed stainless steel with the intermediate electropulsing treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3040-3043.	5.6	32
385	Structural-Phase States of Titanium After an Electroexplosive Alloying and the Subsequent Electron-Beam Treatment. Progress in Physics of Metals, 2010, 11, 273-293.	1.5	3
386	10.1007/s11454-008-2009-y. , 2010, 53, 204.		0
387	Structure and properties of corrosion-resistant coatings deposited by electron-beam facing in air. Metal Science and Heat Treatment, 2009, 51, 599-605.	0.6	4
388	The influence of the initial structural state of armco iron on the ultrasonic treatment effect. Russian Physics Journal, 2009, 52, 85-93.	0.4	3
389	Change of dislocation substructures upon high-cycle fatigue of stainless steel. Russian Physics Journal, 2009, 52, 265-268.	0.4	2
390	Evolution of the dislocation substructure in an annealed pro-eutectoid steel upon irradiation with a high-current electron beam. Russian Physics Journal, 2009, 52, 511-518.	0.4	0
391	Nanocrystalline structure formation in EK-181 steel surface layers on ultrasonic treatment. Physical Mesomechanics, 2009, 12, 150-159.	1.9	8
392	Formation of the fine structure and phase composition of structural steel on quenching. Steel in Translation, 2009, 39, 302-306.	0.3	4
393	Localization of plastic deformation of quenched structural steel. Steel in Translation, 2009, 39, 851-853.	0.3	0
394	Role of the electric potential in the creep acceleration and formation of Al fracture surface. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 1245-1248.	0.6	1
395	A high-current electron beam application for the surface modification of iron, stainless steel, and heat resistant alloys. Surface Engineering and Applied Electrochemistry, 2009, 45, 180-185.	0.8	4
396	Structural and phase transformations in nanostructured 0.1% C-Mn-V-Ti steel during cold deformation by high pressure torsion and subsequent heating. Nanotechnologies in Russia, 2009, 4, 109-120.	0.7	17

#	Article	IF	CITATIONS
397	Formation of silicon carbide and diamond nanoparticles in the surface layer of a silicon target during short-pulse carbon ion implantation. Technical Physics, 2009, 54, 600-602.	0.7	11
398	Surface Modification of TiC–NiCrAl Hard Alloy by Pulsed Electron Beam. IEEE Transactions on Plasma Science, 2009, 37, 1998-2001.	1.3	10
399	Nanostructuring of surfaces of metalloceramic and ceramic materials by electron-beams. Russian Physics Journal, 2008, 51, 505-516.	0.4	83
400	Gradient structure-phase states formed in Hadfield steel during dry sliding wear. Russian Physics Journal, 2008, 51, 1168-1173.	0.4	3
401	Effect of electron pulse irradiation on the microstructure of the surface layer of a cermet. Metal Science and Heat Treatment, 2008, 50, 359-363.	0.6	0
402	Modification of steel surface layer by electron beam treatment. Metal Science and Heat Treatment, 2008, 50, 569-574.	0.6	2
403	Deformation macrolocalisation and fracture in ultrafine-grained armco iron. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 267-272.	5.6	17
404	Magnetic properties and structural parameters of nanosized oxide ferrimagnet powders produced by mechanochemical synthesis from salt solutions. Physics of the Solid State, 2008, 50, 894-900.	0.6	29
405	Effect of elastic excitations on the surface structure of hadfield steel under friction. Technical Physics, 2008, 53, 204-210.	0.7	32
406	Electron-beam modification of VK8 hard alloy: Resulting surface relief. Steel in Translation, 2008, 38, 119-120.	0.3	0
407	Nanocrystalline grains and phase composition in the plasma hardening of cast-iron rollers. Steel in Translation, 2008, 38, 603-607.	0.3	1
408	Thermomechanical hardening of large-diameter reinforcement. Steel in Translation, 2008, 38, 982-986.	0.3	1
409	Modification of the defect substructure in a quenched steel by a low-energy high-current pulsed electron beam. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1213-1216.	0.6	1
410	Structure and properties of plasmochemical powders of aluminum oxide. Russian Journal of Non-Ferrous Metals, 2008, 49, 205-211.	0.6	3
411	Mechanochemical synthesis of nanodimensional ferrite powders from salt systems. Russian Journal of Non-Ferrous Metals, 2008, 49, 319-323.	0.6	3
412	Particles and crystallites under electrical explosion of wires. Nanotechnology, 2008, 19, 145710.	2.6	43
413	Increase of wear-resistance of 30CrMnSi2Ni steel by ultrasonic impact and ion-beam treatments. , 2008, , .		1
414	Electroexplosive boron-aluminum coating of iron: Phase composition and defect substructure. Steel in Translation, 2007, 37, 106-109.	0.3	2

#	Article	IF	CITATIONS
415	Morphological features of the crystallization of surface iron and nickel layers in electroexplosive alloying. Steel in Translation, 2007, 37, 493-496.	0.3	0
416	Structural-phase states and disintegration of thermally hardened large-diameter reinforcement. Steel in Translation, 2007, 37, 497-500.	0.3	0
417	Pulsed-periodic electron-beam treatment of quenched steel. Steel in Translation, 2007, 37, 662-665.	0.3	1
418	Forming structural-phase states of the surface layer of steel by electron-beam treatment. Steel in Translation, 2007, 37, 670-672.	0.3	1
419	Gradient state of the surface layers of iron and nickel after electro-explosive alloying. Metallurgist, 2007, 51, 151-158.	0.6	1
420	Structure and properties of the Ti-Si-N nanocrystalline coatings synthesized in vacuum by the electroarc method. Russian Physics Journal, 2007, 50, 146-152.	0.4	5
421	Phase composition and defect substructure of nickel alloyed with boron and copper by electric explosion of conductors. Russian Physics Journal, 2007, 50, 199-203.	0.4	4
422	On the causes of formation of non-optimal structures in a pressure-treated low-carbon steel. Russian Physics Journal, 2007, 50, 964-968.	0.4	4
423	Investigation of the structural-phase state and its role in the formation of heat-resistance properties of 12% chromium steel. Russian Physics Journal, 2007, 50, 1104-1110.	0.4	4
424	Structure and hot-rolled reinforcement rods properties evolution in the process of long service life. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 430, 125-131.	5.6	2
425	Surface alloying of stainless steel 316 with copper using pulsed electron-beam melting of film–substrate system. Surface and Coatings Technology, 2006, 200, 6378-6383.	4.8	86
426	Effect of ultrasonic surface treatment of steel 40Kh13 on the microstructure of nitrided layer formed by high-intensity low-energy implantation with nitrogen ions. Physics of Metals and Metallography, 2006, 102, 578-586.	1.0	3
427	Structure and magnetic properties of mechanically alloyed ferrite nanopowders. Russian Physics Journal, 2006, 49, 946-951.	0.4	7
428	Structural and phase states in austenitic steel subjected to high-cycle fatigue. Russian Physics Journal, 2006, 49, 97-104.	0.4	0
429	Control of austenite steel fatigue strength. International Journal of Fatigue, 2005, 27, 1186-1191.	5.7	23
430	The structural-phase state changes under the pulse current influence on the fatigue loaded steel. International Journal of Fatigue, 2005, 27, 1221-1226.	5.7	29
431	Substructural and phase transformations during plastic deformations of materials obtained by intensive deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 341-344.	5.6	5
432	Nitriding of Technical-Purity Titanium in Hollow-Cathode Glow Discharge. Technical Physics Letters, 2005, 31, 548.	0.7	10

#	Article	IF	CITATIONS
433	Preparation of Submicron Silicon Nitride Powders via Self-propagating High-Temperature Synthesis. Inorganic Materials, 2005, 41, 1294-1299.	0.8	9
434	Structural Analysis of Armco Iron Subjected to Equal Channel Angular Extrusion. Russian Physics Journal, 2005, 48, 406-411.	0.4	3
435	Electroexplosive Carburizing of Iron: Surface Relief, Phase Composition and Defect Substructure. Russian Physics Journal, 2005, 48, 929-935.	0.4	3
436	Pulsed electron-beam melting of a copper — steel 316 system: Evolution of the chemical composition, microstructure, and properties. Russian Physics Journal, 2005, 48, 1221-1228.	0.4	0
437	The effect of pulsed electron beam melting on microstructure, friction and wear of WC–Hadfield steel hard metal. Wear, 2004, 257, 97-103.	3.1	40
438	Surface modification and alloying of metallic materials with low-energy high-current electron beams. Surface and Coatings Technology, 2004, 180-181, 377-381.	4.8	72
439	Microstructure of the near-surface layers of austenitic stainless steels irradiated with a low-energy, high-current electron beam. Surface and Coatings Technology, 2004, 180-181, 382-386.	4.8	46
440	The effect of atomic hydrogen flow on electrical resistance of the transition metal films. Sensors and Actuators A: Physical, 2004, 113, 293-300.	4.1	4
441	Evolution of the Structure and Carbon Atom Transfer in the Zone of Fatigue Crack Growth in Ferrite-Pearlite Steel. Russian Physics Journal, 2003, 46, 1047-1056.	0.4	2
442	Evolution of a Martensite Packet under Multicycle Fatigue Loading. Russian Physics Journal, 2003, 46, 1181-1185.	0.4	0
443	Surface modification of steels by complex diffusion saturation in low pressure arc discharge. Surface and Coatings Technology, 2003, 169-170, 419-423.	4.8	25
444	Productions of Ultra-Fine Powders and Their Use in High Energetic Compositions. Propellants, Explosives, Pyrotechnics, 2003, 28, 319-333.	1.6	132
445	Title is missing!. Russian Physics Journal, 2002, 45, 319-328.	0.4	0
446	Pulsed electron-beam melting of high-speed steel: structural phase transformations and wear resistance. Surface and Coatings Technology, 2002, 150, 188-198.	4.8	62
447	Bulk and Surface Quenching of Structural Steel: Morphological Analysis of the Structure. Russian Physics Journal, 2002, 45, 209-231.	0.4	6
448	Structure and Phase Content of a Weld in Fe–0.09C–2Mn–1Si Steel. Russian Physics Journal, 2002, 45, 242-250.	0.4	0
449	Modification of single crystal stainless steel structure (Fe–Cr–Ni–Mn) by high-power ion beam. Vacuum, 2001, 63, 483-486.	3.5	38
450	Coexistence of Cubic and Tetragonal Structures in Yttria-Stabilized Zirconia Nanoparticles. Inorganic Materials, 2001, 37, 950-952.	0.8	7

#	Article	IF	CITATIONS
451	Structure and properties of a hard alloy deposited on a copper substrate by means of a pulsed plasma spray technology. Technical Physics, 2001, 46, 897-904.	0.7	5
452	The structure and properties of a hard alloy coating deposited by high-velocity pulsed plasma jet onto a copper substrate. Technical Physics Letters, 2001, 27, 749-751.	0.7	8
453	Effect of Fe and Zr ion implantation and high-current electron irradiation treatment on chemical and mechanical properties of Ti–V–Al Alloy. Journal of Applied Physics, 2000, 87, 2142-2148.	2.5	36
454	Pulsed electron-beam treatment of WC–TiC–Co hard-alloy cutting tools: wear resistance and microstructural evolution. Surface and Coatings Technology, 2000, 125, 251-256.	4.8	49
455	Physical foundations for surface treatment of materials with low energy, high current electron beams. Surface and Coatings Technology, 2000, 125, 49-56.	4.8	304
456	Preparation and investigation of the structure and properties of Al2O3 plasma-detonation coatings. Technical Physics Letters, 2000, 26, 960-963.	0.7	8
457	Ultradisperse powders obtained by sputtering a target with high-power nanosecond pulsed ion beam. Technical Physics Letters, 2000, 26, 1038-1040.	0.7	0
458	Mechanisms for Hardening of Carbon Steel with a Nanosecond High-Energy, High-Current Electron Beam. Materials and Manufacturing Processes, 1999, 14, 205-216.	4.7	7
459	Bulk changes in the microhardness of a solid WC-110G13 steel alloy exposed to a low-energy, high-current electron beam. Technical Physics Letters, 1999, 25, 825-827.	0.7	2
460	Mixing of Ta-Fe and Mo-Fe systems using a low-energy, high-current electron beam. Surface and Coatings Technology, 1998, 99, 98-110.	4.8	22
461	Pulsed electron-beam technology for surface modification of metallic materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 2480-2488.	2.1	329
462	Ultrasonic Treatment of Nanostructured Powders for the Production of Zirconia Ceramics. Materials Research Society Symposia Proceedings, 1998, 520, 197.	0.1	3
463	Structural and Phase Transformations in the Ni- and Fe-Based Plasma Coatings Under the Effect of High Energy. Materials and Manufacturing Processes, 1997, 12, 849-861.	4.7	3
464	Surface and near surface structure and composition of high-dose implanted and electron beam annealed single crystal copper. Surface and Coatings Technology, 1997, 89, 90-96.	4.8	7
465	High-Rate Deposition of Thin Films by High-Intensity Pulsed Ion Beam Evaporation. Materials Research Society Symposia Proceedings, 1995, 388, 317.	0.1	0
466	Change in structure and properties of carbon steels bombarded by a 10?5 to 10?4 second high-energy electron beam. Russian Physics Journal, 1995, 38, 1040-1046.	0.4	3
467	Structural-diffraction analysis of nanocrystalline materials. Russian Physics Journal, 1994, 37, 95-100.	0.4	6
468	Study of the character of deformation of hard alloy WC-steel 110G13. Russian Physics Journal, 1994, 37, 130-136.	0.4	1

#	Article	IF	CITATIONS
469	Structural-phase changes in hard alloy WC-steel 110G13 after dynamic loading. Russian Physics Journal, 1994, 37, 757-761.	0.4	3
470	Deformation behaviour of ultra-fine-grained copper. Acta Metallurgica Et Materialia, 1994, 42, 2467-2475.	1.8	547
471	Low-temperature tempering kinetics of hardened steel 38KhN3MFA. Russian Physics Journal, 1993, 36, 132-136.	0.4	1
472	Evolution of the carbide subsystem in steel 38KhN3MFA quenched to martensite upon low-temperature maintenance. Russian Physics Journal, 1993, 36, 480-483.	0.4	0
473	Structural-phase analysis of sintered alloy WC-30% steel 110G13. Russian Physics Journal, 1993, 36, 497-500.	0.4	2
474	Microstructure of Heat-Affected Zone in Carbon Steel Irradiated by a Low-Energy High-Current Electron Beam. Materials Research Society Symposia Proceedings, 1992, 279, 395.	0.1	0
475	Fractal properties of boundary surfaces in zircon powders prepared by plasmochemistry methods. Glass and Ceramics (English Translation of Steklo I Keramika), 1992, 49, 136-138.	0.6	0
476	Microstructure of the near-surface layers of ion-implanted polycrystalline Cu. Surface and Coatings Technology, 1992, 56, 11-17.	4.8	7
477	Deformation processes in tungsten carbide powder ground in a ball mill. Russian Physics Journal, 1992, 35, 447-451.	0.4	2
478	Influence of current pulses in plastic deformation on the macrostructure of austenitic chromomanganese steel. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh) Tj ETQqO () OorgBT /(Overlock 10 T
479	Structural investigations of zirconia powders obtained by HF-plasmochemical denitration. Glass and Ceramics (English Translation of Steklo I Keramika), 1991, 48, 453-456.	0.6	1
480	Stabilization of high-temperature modification of zirconium dioxide. Glass and Ceramics (English) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
481	Electron microscopy of steel 08G2S wire after electrostimulated drawing. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1990, 33, 1011-1015.	0.0	Ο
482	Structure-concentration diagrams of martensite transformations in iron alloys and steels. Metal Science and Heat Treatment, 1989, 31, 85-87.	0.6	0
483	Application of a low-pressure arc discharge for formation of hard diffusion surface layers. , 0, , .		0
484	Electron-Ion-Plasma Modification of the Surface Layer of Silumin. Advanced Materials Research, 0, 872, 157-161.	0.3	3
485	Hardening of the Surface Layer of Silumin by Electron Beam. Advanced Materials Research, 0, 872, 162-166.	0.3	3
486	Superior Quality Rails: Structure-Phase States and Defect Substructure. Advanced Materials Research, 0, 1013, 127-132.	0.3	1

#	Article	IF	CITATIONS
487	Structure and Property Coating Modification by High Energy Density. Advanced Materials Research, 0, 1013, 153-157.	0.3	2
488	The Method of Receiving of Surface Alloys Si-Ti System. Applied Mechanics and Materials, 0, 682, 87-90.	0.2	0
489	Plastic Deformation Localization of Low Carbon Steel: Hydrogen Effect. Advanced Materials Research, 0, 1013, 77-83.	0.3	1
490	Structure and Properties of Wear-Resistant Weld Deposit Formed on Martensitic Steel Using the Electric-Arc Method. Advanced Materials Research, 0, 1013, 194-199.	0.3	7
491	Phase Composition of Zirconium Dioxide Stabilized with Yttrium. Advanced Materials Research, 0, 1013, 108-114.	0.3	0
492	The Influence of Electron Beam Treatment on Al-Si Alloy Structure Destroyed at High-Cycle Fatigue. Key Engineering Materials, 0, 675-676, 655-659.	0.4	9
493	Structure and Properties of a Titanium Film – Aluminum Substrate System Alloyed by an Intense Pulsed Electron Beam. Key Engineering Materials, 0, 683, 9-14.	0.4	0
494	The Structure and Properties of Yttrium-Stabilized Zirconium Dioxide Ceramics Treated by Electron Beam. Key Engineering Materials, 0, 683, 53-57.	0.4	0
495	Thermal Processes at Electron-Beam Treatment of Yttrium-Stabilized Zirconium Dioxide Ceramics. Key Engineering Materials, 0, 683, 58-64.	0.4	Ο
496	Increase of Fatigue Life of Titanium VT1-0 after Electron Beam Treatment. Key Engineering Materials, 0, 704, 15-19.	0.4	4
497	Numerical Simulation of Thermal Processes Involved in Surface Alloying of Aluminum with Titanium by an Intense Pulsed Electron Beam. Key Engineering Materials, 0, 683, 569-575.	0.4	7
498	Mechanisms of nanoscale structure formation during electron beam treatment of silumin. IOP Conference Series: Materials Science and Engineering, 0, 447, 012061.	0.6	1
499	Change in the Fine Structure of the Additive Al-Mg Alloy after Electron-Beam Processing. Key Engineering Materials, 0, 910, 1142-1147.	0.4	Ο