List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1447742/publications.pdf Version: 2024-02-01

ΗΛΙΥΛΝΙΙ

#	Article	IF	CITATIONS
1	Preparation of double-walled polysulfone/graphene oxide microcapsules with high thermal stability and their application in self-lubricating polyamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128111.	4.7	10
2	Smart µâ€Fiber Hydrogels with Macroâ€Porous Structure for Sequentially Promoting Multiple Phases of Articular Cartilage Regeneration. Advanced Functional Materials, 2022, 32, .	14.9	30
3	Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death and Disease, 2022, 13, 264.	6.3	2
4	Preparation of linseed oil-loaded porous glass bubble/wax microcapsules for corrosion- and wear-resistant difunctional coatings. Chemical Engineering Journal, 2022, 437, 135403.	12.7	17
5	Eliminating the original cargos of glioblastoma cell-derived small extracellular vesicles for efficient drug delivery to glioblastoma with improved biosafety. Bioactive Materials, 2022, 16, 204-217.	15.6	10
6	45S5 Bioglass® works synergistically with siRNA to downregulate the expression of matrix metalloproteinase-9 in diabetic wounds. Acta Biomaterialia, 2022, 145, 372-389.	8.3	21
7	Preparation of BTA@PDA/PANI microcapsules and anti-corrosion performance of self-healing epoxy coatings on low carbon steel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129481.	4.7	12
8	Biomaterials affect cell-cell interactions in vitro in tissue engineering. Journal of Materials Science and Technology, 2021, 63, 62-72.	10.7	14
9	Small extracellular vesicles secreted by urine-derived stem cells enhanced wound healing in aged mice by ameliorating cellular senescence. Journal of Materials Science and Technology, 2021, 63, 216-227.	10.7	5
10	Bioglass enhances the production of exosomes and improves their capability of promoting vascularization. Bioactive Materials, 2021, 6, 823-835.	15.6	61
11	Tough hydrogels with tunable soft and wet interfacial adhesion. Polymer Testing, 2021, 93, 106976.	4.8	21
12	Preparation of Tung Oil‣oaded PU/PANI Microcapsules and Synergetic Anti orrosion Properties of Selfâ€Healing Epoxy Coatings. Macromolecular Materials and Engineering, 2021, 306, 2000581.	3.6	33
13	Structural evolution and sulfuration of nickel cobalt hydroxides from 2D to 1D on 3D diatomite for supercapacitors. CrystEngComm, 2021, 23, 5636-5644.	2.6	26
14	Incorporation of Bioglass Improved the Mechanical Stability and Bioactivity of Alginate/Carboxymethyl Chitosan Hydrogel Wound Dressing. ACS Applied Bio Materials, 2021, 4, 1677-1692.	4.6	34
15	Macrophages activated by akermanite/alginate composite hydrogel stimulate migration of bone marrow-derived mesenchymal stem cells. Biomedical Materials (Bristol), 2021, 16, 045004.	3.3	10
16	A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification. Acta Biomaterialia, 2021, 124, 336-347.	8.3	26
17	Sodium alginate-bioglass-encapsulated hAECs restore ovarian function in premature ovarian failure by stimulating angiogenic factor secretion. Stem Cell Research and Therapy, 2021, 12, 223.	5.5	11
18	Controlled release of MSC-derived small extracellular vesicles by an injectable Diels-Alder crosslinked hyaluronic acid/PEG hydrogel for osteoarthritis improvement. Acta Biomaterialia, 2021, 128, 163-174.	8.3	37

#	Article	IF	CITATIONS
19	Tetrandrine inhibits the occurrence and development of frozen shoulder by inhibiting inflammation, angiogenesis, and fibrosis. Biomedicine and Pharmacotherapy, 2021, 140, 111700.	5.6	9
20	Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing. Bioactive Materials, 2021, 6, 3692-3704.	15.6	67
21	A multidimensional rational design of nickel–iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors. Journal of Colloid and Interface Science, 2021, 603, 799-809.	9.4	138
22	An effective strategy for preparing macroporous and self-healing bioactive hydrogels for cell delivery and wound healing. Chemical Engineering Journal, 2021, 425, 130677.	12.7	26
23	Calcium silicate enhances immunosuppressive function of MSCs to indirectly modulate the polarization of macrophages. International Journal of Energy Production and Management, 2021, 8, rbab056.	3.7	14
24	Reversing the surface charge of MSCâ€derived small extracellular vesicles by εPLâ€₽EGâ€DSPE for enhanced osteoarthritis treatment. Journal of Extracellular Vesicles, 2021, 10, e12160.	12.2	40
25	Regulating the production and biological function of small extracellular vesicles: current strategies, applications and prospects. Journal of Nanobiotechnology, 2021, 19, 422.	9.1	13
26	Anti-Inflammatory and Prochondrogenic In Situ-Formed Injectable Hydrogel Crosslinked by Strontium-Doped Bioglass for Cartilage Regeneration. ACS Applied Materials & Interfaces, 2021, 13, 59772-59786.	8.0	30
27	Super Bulk and Interfacial Toughness of Amylopectin Reinforced PAAm/PVA Doubleâ€Network Hydrogels via Multiple Hydrogen Bonds. Macromolecular Materials and Engineering, 2020, 305, 1900450.	3.6	14
28	Injectable Quercetin-Loaded Hydrogel with Cartilage-Protection and Immunomodulatory Properties for Articular Cartilage Repair. ACS Applied Bio Materials, 2020, 3, 761-771.	4.6	17
29	Bioglass could increase cell membrane fluidity with ion products to develop its bioactivity. Cell Proliferation, 2020, 53, e12906.	5.3	11
30	High frequency acoustic cell stimulation promotes exosome generation regulated by a calcium-dependent mechanism. Communications Biology, 2020, 3, 553.	4.4	65
31	Bifunctional Cx43 Mimic Peptide Grafted Hyaluronic Acid Hydrogels Inhibited Tumor Recurrence and Stimulated Wound Healing for Postsurgical Tumor Treatment. Advanced Functional Materials, 2020, 30, 2004709.	14.9	28
32	Preparation of PU/GO hybrid wall microcapsules and their self-lubricating properties for epoxy composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 596, 124729.	4.7	28
33	Programmed Transformations of Strong Polyvinyl Alcohol/Sodium Alginate Hydrogels via Ionic Crosslink Lithography. Macromolecular Rapid Communications, 2020, 41, 2000127.	3.9	10
34	Microcapsules Prepared via Pickering Emulsion Polymerization for Multifunctional Coatings. Progress in Organic Coatings, 2020, 147, 105785.	3.9	11
35	Preparation of smart coatings with self-healing and anti-wear properties by embedding PU-fly ash absorbing linseed oil microcapsules. Progress in Organic Coatings, 2020, 145, 105668.	3.9	17
36	Multiple Hydrogen Bonds–Reinforced Hydrogels with High Strength, Shape Memory, and Adsorption Antiâ€Inflammatory Molecules. Macromolecular Rapid Communications, 2020, 41, e2000202.	3.9	20

#	Article	IF	CITATIONS
37	Modulation of macrophages by bioactive glass/sodium alginate hydrogel is crucial in skin regeneration enhancement. Biomaterials, 2020, 256, 120216.	11.4	128
38	Multilayer Injectable Hydrogel System Sequentially Delivers Bioactive Substances for Each Wound Healing Stage. ACS Applied Materials & Interfaces, 2020, 12, 29787-29806.	8.0	37
39	Local intramyocardial delivery of bioglass with alginate hydrogels for post-infarct myocardial regeneration. Biomedicine and Pharmacotherapy, 2020, 129, 110382.	5.6	21
40	Applications of extracellular vesicles in tissue regeneration. Biomicrofluidics, 2020, 14, 011501.	2.4	24
41	Polyurea/polyaniline hybrid shell microcapsules loaded with isophorone diisocyanate for synergetic self-healing coatings. Progress in Organic Coatings, 2020, 145, 105684.	3.9	25
42	Bioglass for skin regeneration. , 2019, , 225-250.		7
43	Interfacial adhesion and water resistance of stainless steel–polyolefin improved by functionalized silane. Polymer Engineering and Science, 2019, 59, 1866-1873.	3.1	6
44	High strength and antibacterial polyelectrolyte complex CS/HS hydrogel films for wound healing. Soft Matter, 2019, 15, 7686-7694.	2.7	34
45	Bioceramic akermanite enhanced vascularization and osteogenic differentiation of human induced pluripotent stem cells in 3D scaffolds in vitro and vivo. RSC Advances, 2019, 9, 25462-25470.	3.6	17
46	Embryonic Stem Cellsâ€Derived Exosomes Endowed with Targeting Properties as Chemotherapeutics Delivery Vehicles for Glioblastoma Therapy. Advanced Science, 2019, 6, 1801899.	11.2	182
47	Enhancement of rotator cuff tendon–bone healing using combined aligned electrospun fibrous membranes and kartogenin. RSC Advances, 2019, 9, 15582-15592.	3.6	18
48	Bioactive injectable polymethylmethacrylate/silicate bioceramic hybrid cements for percutaneous vertebroplasty and kyphoplasty. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 125-135.	3.1	17
49	Ultralow Tribological Properties of Polymer Composites Containing [BMIm]PF ₆ ‣oaded Multilayer Wall Microcapsule. Macromolecular Materials and Engineering, 2019, 304, 1800791.	3.6	21
50	Dual-Functional Coatings with Self-Lubricating and Self-Healing Properties by Combining Poly(urea–formaldehyde)/SiO ₂ Hybrid Microcapsules Containing Linseed Oil. Industrial & Engineering Chemistry Research, 2019, 58, 22032-22039.	3.7	36
51	Pro-chondrogenic and immunomodulatory melatonin-loaded electrospun membranes for tendon-to-bone healing. Journal of Materials Chemistry B, 2019, 7, 6564-6575.	5.8	40
52	Synthesis and optimization of polyurethane microcapsules containing [BMIm]PF6 ionic liquid lubricant. Journal of Colloid and Interface Science, 2019, 534, 469-479.	9.4	77
53	An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration. Biomaterials, 2019, 192, 149-158.	11.4	107
54	Alginate-aker injectable composite hydrogels promoted irregular bone regeneration through stem cell recruitment and osteogenic differentiation. Journal of Materials Chemistry B, 2018, 6, 1951-1964.	5.8	38

#	Article	IF	CITATIONS
55	The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study. Acta Biomaterialia, 2018, 69, 372-384.	8.3	93
56	Bioglass enhanced wound healing ability of urineâ€derived stem cells through promoting paracrine effects between stem cells and recipient cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1609-e1622.	2.7	23
57	Fabrication of microcapsules containing dual-functional tung oil and properties suitable for self-healing and self-lubricating coatings. Progress in Organic Coatings, 2018, 115, 164-171.	3.9	101
58	TiO ₂ Nanotubes Enhance Vascularization and Osteogenic Differentiation Through Stimulating Interactions Between Bone Marrow Stromal Cells and Endothelial Cells. Journal of Biomedical Nanotechnology, 2018, 14, 765-777.	1.1	7
59	Synthesis of novel multilayer composite microcapsules and their application in self-lubricating polymer composites. Composites Science and Technology, 2018, 164, 120-128.	7.8	61
60	Fabrication of SiO2 wrapped polystyrene microcapsules by Pickering polymerization for self-lubricating coatings. Journal of Colloid and Interface Science, 2018, 528, 92-99.	9.4	68
61	Preparation of microcapsules containing double-component lubricant and self-lubricating performance of polymer composites. Materials Research Express, 2018, 5, 055302.	1.6	5
62	Bioactive Injectable Hydrogels Containing Desferrioxamine and Bioglass for Diabetic Wound Healing. ACS Applied Materials & Interfaces, 2018, 10, 30103-30114.	8.0	165
63	InÂvitro degradation and surface bioactivity of iron-matrix composites containing silicate-based bioceramic. Bioactive Materials, 2017, 2, 10-18.	15.6	33
64	Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 181-187.	4.7	128
65	Macrophage phagocytosis of biomedical Mg alloy degradation products prepared by electrochemical method. Materials Science and Engineering C, 2017, 75, 1178-1183.	7.3	19
66	Combined biomaterial signals stimulate communications between bone marrow stromal cell and endothelial cell. RSC Advances, 2017, 7, 5306-5314.	3.6	11
67	PHBV/bioglass composite scaffolds with co-cultures of endothelial cells and bone marrow stromal cells improve vascularization and osteogenesis for bone tissue engineering. RSC Advances, 2017, 7, 22197-22207.	3.6	22
68	Bioglass promotes wound healing through modulating the paracrine effects between macrophages and repairing cells. Journal of Materials Chemistry B, 2017, 5, 5240-5250.	5.8	105
69	Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration. Acta Biomaterialia, 2017, 55, 249-261.	8.3	41
70	Injectable bioactive akermanite/alginate composite hydrogels for in situ skin tissue engineering. Journal of Materials Chemistry B, 2017, 5, 3315-3326.	5.8	73
71	Synergetic stimulation of nanostructure and chemistry cues on behaviors of fibroblasts and endothelial cells. Colloids and Surfaces B: Biointerfaces, 2017, 160, 500-509.	5.0	8
72	High temperature resistant polysulfone/silica double-wall microcapsules and their application inAself-lubricating polypropylene. RSC Advances, 2017, 7, 50328-50335.	3.6	32

#	Article	IF	CITATIONS
73	Polysulfone/SiO ₂ Hybrid Shell Microcapsules Synthesized by the Combination of Pickering Emulsification and the Solvent Evaporation Technique and Their Application in Self-Lubricating Composites. Langmuir, 2017, 33, 14149-14155.	3.5	47
74	Effect of macrophages on <i>in vitro</i> corrosion behavior of magnesium alloy. Journal of Biomedical Materials Research - Part A, 2016, 104, 2476-2487.	4.0	29
75	Fabrication of Thermally Stable Polysulfone Microcapsules Containing [EMIm][NTf ₂] Ionic Liquid for Enhancement of In Situ Self‣ubrication Effect of Epoxy. Macromolecular Materials and Engineering, 2016, 301, 1473-1481.	3.6	53
76	Surface functionalized carbon nanofibers and their effect on the dispersion and tribological property of epoxy nanocomposites. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1219-1225.	1.0	6
77	Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Research and Therapy, 2016, 7, 136.	5.5	302
78	Bioactive calcium silicate extracts regulate the morphology and stemness of human embryonic stem cells at the initial stage. RSC Advances, 2016, 6, 104666-104674.	3.6	5
79	Preparation of high thermal stability polysulfone microcapsules containing lubricant oil and its tribological properties of epoxy composites. Journal of Microencapsulation, 2016, 33, 286-291.	2.8	39
80	Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior. Biomaterials, 2016, 84, 64-75.	11.4	114
81	The stimulation of osteogenic differentiation of embryoid bodies from human induced pluripotent stem cells by akermanite bioceramics. Journal of Materials Chemistry B, 2016, 4, 2369-2376.	5.8	18
82	Bioglass Activated Skin Tissue Engineering Constructs for Wound Healing. ACS Applied Materials & Interfaces, 2016, 8, 703-715.	8.0	180
83	Human Urine Derived Stem Cells in Combination with β-TCP Can Be Applied for Bone Regeneration. PLoS ONE, 2015, 10, e0125253.	2.5	49
84	Application of hydrophobic coatings in biodegradable devices. Bio-Medical Materials and Engineering, 2015, 25, 77-88.	0.6	3
85	Human urine-derived stem cells can be induced into osteogenic lineage by silicate bioceramics via activation of the Wnt/β-catenin signaling pathway. Biomaterials, 2015, 55, 1-11.	11.4	76
86	An Anisotropically and Heterogeneously Aligned Patterned Electrospun Scaffold with Tailored Mechanical Property and Improved Bioactivity for Vascular Tissue Engineering. ACS Applied Materials & Interfaces, 2015, 7, 8706-8718.	8.0	70
87	Design of a thermosensitive bioglass/agarose–alginate composite hydrogel for chronic wound healing. Journal of Materials Chemistry B, 2015, 3, 8856-8864.	5.8	87
88	Superparamagnetic plasmonic nanoshells for improved imaging, separation and seeding of co-cultured cells. Journal of Materials Chemistry B, 2015, 3, 7787-7795.	5.8	4
89	Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 42-51.	3.4	68
90	Influence of fluoride treatment on surface properties, biodegradation and cytocompatibility of Mg–Nd–Zn–Zr alloy. Journal of Materials Science: Materials in Medicine, 2014, 25, 791-799.	3.6	32

#	Article	IF	CITATIONS
91	Influence of proteins and cells on in vitro corrosion of Mg–Nd–Zn–Zr alloy. Corrosion Science, 2014, 85, 477-481.	6.6	65
92	Electrospun membranes: control of the structure and structure related applications in tissue regeneration and drug delivery. Journal of Materials Chemistry B, 2014, 2, 5492-5510.	5.8	90
93	Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells. Biomaterials, 2014, 35, 3803-3818.	11.4	216
94	Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation. Nanoscale, 2014, 6, 14360-14370.	5.6	29
95	Synergy effects of copper and silicon ions on stimulation of vascularization by copper-doped calcium silicate. Journal of Materials Chemistry B, 2014, 2, 1100-1110.	5.8	124
96	The calcium silicate/alginate composite: Preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomaterialia, 2013, 9, 9107-9117.	8.3	129
97	Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomaterialia, 2013, 9, 5379-5389.	8.3	203
98	uPA and MMPâ€2 were involved in selfâ€assembled network formation in a two dimensional coâ€culture model of bone marrow stromal cells and endothelial cells. Journal of Cellular Biochemistry, 2013, 114, 650-657.	2.6	20
99	Controlled drug release from a polymer matrix by patterned electrospun nanofibers with controllable hydrophobicity. Journal of Materials Chemistry B, 2013, 1, 4182.	5.8	32
100	Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials, 2013, 34, 10028-10042.	11.4	311
101	The Preparation of Dendritic Nickel Complex and Performance Evaluation in the Oligomerization of Ethylene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 163-167.	2.2	14
102	Improvement of PHBV Scaffolds with Bioglass for Cartilage Tissue Engineering. PLoS ONE, 2013, 8, e71563.	2.5	59
103	Electrospun Poly(L-Lactide) Fiber with Ginsenoside Rg3 for Inhibiting Scar Hyperplasia of Skin. PLoS ONE, 2013, 8, e68771.	2.5	41
104	Preparation, characterization and in vitro angiogenic capacity of cobalt substituted β-tricalcium phosphate ceramics. Journal of Materials Chemistry, 2012, 22, 21686.	6.7	63
105	Preparation of hydrophilic poly(l-lactide) electrospun fibrous scaffolds modified with chitosan for enhanced cell biocompatibility. Polymer, 2012, 53, 2298-2305.	3.8	85
106	Toughening Self-healing Epoxy Resin by Addition of Microcapsules. Polymers and Polymer Composites, 2011, 19, 223-226.	1.9	4
107	The Role of Vascular Actors in Two Dimensional Dialogue of Human Bone Marrow Stromal Cell and Endothelial Cell for Inducing Self-Assembled Network. PLoS ONE, 2011, 6, e16767.	2.5	49
108	Synthesis and characterization of chitosan/ureaâ€formaldehyde shell microcapsules containing dicyclopentadiene. Journal of Applied Polymer Science, 2011, 121, 2202-2212.	2.6	31

#	Article	IF	CITATIONS
109	Surface Modification of Poly(urea-formaldehyde) Microcapsules and the Effect on the Epoxy Composites Performance. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 991-995.	2.2	19
110	Role of neural-cadherin in early osteoblastic differentiation of human bone marrow stromal cells cocultured with human umbilical vein endothelial cells. American Journal of Physiology - Cell Physiology, 2010, 299, C422-C430.	4.6	48
111	Effects of Wollastonite on Proliferation and Differentiation of Human Bone Marrow-derived Stromal Cells in PHBV/Wollastonite Composite Scaffolds. Journal of Biomaterials Applications, 2009, 24, 231-246.	2.4	41
112	Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells. Biomicrofluidics, 2009, 3, 034102.	2.4	64
113	Nanoparticle patterning in a microfluidic drop induced by surface acoustic waves. , 2009, , .		1
114	The dynamics of surface acoustic waveâ€driven scaffold cell seeding. Biotechnology and Bioengineering, 2009, 103, 387-401.	3.3	29
115	Preparation and characterization of selfâ€healing microcapsules with poly(ureaâ€formaldehyde) grafted epoxy functional group shell. Journal of Applied Polymer Science, 2009, 113, 1501-1506.	2.6	59
116	InÂvitro biocompatibility assessment of PHBV/Wollastonite composites. Journal of Materials Science: Materials in Medicine, 2008, 19, 67-73.	3.6	23
117	Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent. Applied Surface Science, 2008, 255, 1894-1900.	6.1	168
118	Microfluidic Colloidal Island Formation and Erasure Induced by Surface Acoustic Wave Radiation. Physical Review Letters, 2008, 101, 084502.	7.8	74
119	Preparation and characterization of self-healing poly (urea-formaldehyde) microcapsules. , 2007, , .		3
120	Surface acoustic wave concentration of particle and bioparticle suspensions. Biomedical Microdevices, 2007, 9, 647-656.	2.8	191
121	A scaffold cell seeding method driven by surface acoustic waves. Biomaterials, 2007, 28, 4098-4104.	11.4	74
122	In vitro degradation of porous degradable and bioactive PHBV/wollastonite composite scaffolds. Polymer Degradation and Stability, 2005, 87, 301-307.	5.8	76
123	Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for cartilage tissue engineering. European Polymer Journal, 2005, 41, 2443-2449.	5.4	52
124	pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Composites Science and Technology, 2005, 65, 2226-2232.	7.8	147
125	Fabrication and characterization of \hat{l}^2 -dicalcium silicate/poly(d,l-lactic acid) composite scaffolds. Materials Letters, 2005, 59, 2214-2218.	2.6	33
126	Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. Journal of Controlled Release, 2005, 107, 463-473.	9.9	93

#	Article	IF	CITATIONS
127	in vitro Evaluation of Biodegradable Poly(butylene succinate) as a Novel Biomaterial. Macromolecular Bioscience, 2005, 5, 433-440.	4.1	133
128	Fabrication, Characterization, and in vitro Degradation of Composite Scaffolds Based on PHBV and Bioactive Glass. Journal of Biomaterials Applications, 2005, 20, 137-155.	2.4	67
129	Preparation of macroporous polymer scaffolds using calcined cancellous bone as a template. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 575-584.	3.5	10
130	Preparation and characterization of bioactive and biodegradable Wollastonite/poly(D,L-lactic acid) composite scaffolds. Journal of Materials Science: Materials in Medicine, 2004, 15, 1089-1095.	3.6	89
131	Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials, 2004, 25, 5473-5480.	11.4	158