Atsushi Kato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1447670/publications.pdf

Version: 2024-02-01

192 papers 6,969 citations

45 h-index 79698 73 g-index

208 all docs

208 docs citations

208 times ranked 4962 citing authors

#	Article	IF	CITATIONS
1	Polyhydroxylated Alkaloids Isolated from Mulberry Trees (<i>Morus alba</i> L.) and Silkworms (<i>Bombyx mori</i> L.). Journal of Agricultural and Food Chemistry, 2001, 49, 4208-4213.	5.2	342
2	Iminosugars as therapeutic agents: recent advances and promising trends. Future Medicinal Chemistry, 2011, 3, 1513-1521.	2.3	264
3	In vitroinhibition and intracellular enhancement of lysosomal α-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. FEBS Journal, 2000, 267, 4179-4186.	0.2	226
4	Biological Properties ofd- andl-1-Deoxyazasugars. Journal of Medicinal Chemistry, 2005, 48, 2036-2044.	6.4	177
5	New polyhydroxylated pyrrolizidine alkaloids from Muscari armeniacum: structural determination and biological activity. Tetrahedron: Asymmetry, 2000, 11, 1-8.	1.8	157
6	Protective Effects of Dietary Chamomile Tea on Diabetic Complications. Journal of Agricultural and Food Chemistry, 2008, 56, 8206-8211.	5.2	152
7	Involvement of increased expression of transient receptor potential melastatin 8 in oxaliplatin-induced cold allodynia in mice. Neuroscience Letters, 2009, 458, 93-95.	2.1	142
8	Antihyperglycemic Effects of N-Containing Sugars fromXanthocercis zambesiaca, Morus bombycis, Aglaonema treubii, and Castanos permum australein Streptozotocin-Diabetic Mice. Journal of Natural Products, 1998, 61, 397-400.	3.0	138
9	Polyhydroxylated pyrrolidine and pyrrolizidine alkaloids from Hyacinthoides non-scripta and Scilla campanulata. Carbohydrate Research, 1999, 316, 95-103.	2.3	126
10	Alkaloidal Components in the Poisonous Plant, Ipomoea carnea (Convolvulaceae). Journal of Agricultural and Food Chemistry, 2003, 51, 4995-5000.	5.2	121
11	\hat{l} ±-1-C-Octyl-1-deoxynojirimycin as a pharmacological chaperone for Gaucher disease. Bioorganic and Medicinal Chemistry, 2006, 14, 7736-7744.	3.0	106
12	Calystegins of Physalts alkekengi var. Francheti (Solanaceae). Structure Determination and their Glycosidase Inhibitory Activities. FEBS Journal, 1995, 229, 369-376.	0.2	103
13	Australine and related alkaloids: easy structural confirmation by 13C NMR spectral data and biological activities. Tetrahedron: Asymmetry, 2003, 14, 325-331.	1.8	100
14	In vitro inhibition of $\hat{I}\pm$ -glucosidases and glycogen phosphorylase by catechin gallates in green tea. Food Chemistry, 2010, 122, 1061-1066.	8.2	96
15	Specific alpha-Galactosidase Inhibitors, N-Methylcalystegines Structure/Activity Relationships of Calystegines from Lycium Chinense. FEBS Journal, 1997, 248, 296-303.	0.2	94
16	The l-enantiomers of d-sugar-mimicking iminosugars are noncompetitive inhibitors of d-glycohydrolase?. Tetrahedron: Asymmetry, 2005, 16, 223-229.	1.8	93
17	Glycosidase-inhibiting pyrrolidine alkaloids from Hyacinthoides non-scripta. Phytochemistry, 1997, 46, 255-259.	2.9	91
18	Nitrogen-Containing Furanose and Pyranose Analogues fromHyacinthusorientalis. Journal of Natural Products, 1998, 61, 625-628.	3.0	91

#	Article	IF	Citations
19	Fagomine Isomers and Glycosides fromXanthocercis zambesiaca. Journal of Natural Products, 1997, 60, 312-314.	3.0	85
20	Homonojirimycin Isomers and N-Alkylated Homonojirimycins:Â Structural and Conformational Basis of Inhibition of Glycosidases. Journal of Medicinal Chemistry, 1998, 41, 2565-2571.	6.4	84
21	Asymmetric Synthesis of the Four Possible Fagomine Isomers. Journal of Organic Chemistry, 2003, 68, 3603-3607.	3.2	83
22	Mechanical Allodynia Induced by Paclitaxel, Oxaliplatin and Vincristine: Different Effectiveness of Gabapentin and Different Expression of Voltage-Dependent Calcium Channel .ALPHA.2.DELTA1 Subunit. Biological and Pharmaceutical Bulletin, 2009, 32, 732-734.	1.4	81
23	The effects of calystegines isolated from edible fruits and vegetables on mammalian liver glycosidases. Glycobiology, 1997, 7, 1085-1088.	2.5	79
24	New Sugar-Mimic Alkaloids from the Pods of Angylocalyx pynaertii. Journal of Natural Products, 2002, 65, 198-202.	3.0	77
25	Isolation of Glycosidase-Inhibiting Hyacinthacines and Related Alkaloids fromScilla socialis. Journal of Natural Products, 2007, 70, 993-997.	3.0	75
26	Asymmetric synthesis of fagomine and its congeners. Tetrahedron: Asymmetry, 2001, 12, 817-819.	1.8	74
27	Effect of five-membered sugar mimics on mammalian glycogen-degrading enzymes and various glucosidases. Bioorganic and Medicinal Chemistry, 2008, 16, 2734-2740.	3.0	74
28	α-1- <i>C</i> -Butyl-1,4-dideoxy-1,4-imino- <scp> </scp> -arabinitol as a Second-Generation Iminosugar-Based Oral α-Glucosidase Inhibitor for Improving Postprandial Hyperglycemia. Journal of Medicinal Chemistry, 2012, 55, 10347-10362.	6.4	72
29	lminosugars Inhibit Dengue Virus Production via Inhibition of ER Alpha-Glucosidases—Not Glycolipid Processing Enzymes. PLoS Neglected Tropical Diseases, 2016, 10, e0004524.	3.0	69
30	Asymmetric synthesis of 1-deoxynojirimycin and its congeners from a common chiral building block. Tetrahedron, 2004, 60, 8199-8205.	1.9	65
31	Novel î±-L-fucosidase inhibitors from the bark ofAngylocalyx pynaertii(Leguminosae). FEBS Journal, 2001, 268, 35-41.	0.2	64
32	Inhibitory Effects of Zingiber officinale Roscoe Derived Components on Aldose Reductase Activity in Vitro and in Vivo. Journal of Agricultural and Food Chemistry, 2006, 54, 6640-6644.	5.2	63
33	Structureâ^'Activity Relationships of Flavonoids as Potential Inhibitors of Glycogen Phosphorylase. Journal of Agricultural and Food Chemistry, 2008, 56, 4469-4473.	5.2	59
34	In vitro inhibition of glycogen-degrading enzymes and glycosidases by six-membered sugar mimics and their evaluation in cell cultures. Bioorganic and Medicinal Chemistry, 2008, 16, 7330-7336.	3.0	58
35	Calystegine B4, a novel trehalase inhibitor from Scopolia japonica. Carbohydrate Research, 1996, 293, 195-204.	2.3	53
36	Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity. Phytomedicine, 2009, 16, 258-261.	5.3	53

3

#	Article	IF	CITATIONS
37	Looking glass inhibitors: scalable syntheses of DNJ, DMDP, and (3R)-3-hydroxy-l-bulgecinine from d-glucuronolactone and of l-DNJ, l-DMDP, and (3S)-3-hydroxy-d-bulgecinine from l-glucuronolactone. DMDP inhibits β-glucosidases and β-galactosidases whereas l-DMDP is a potent and specific inhibitor of α-glucosidases. Tetrahedron: Asymmetry, 2010, 21, 311-319.	1.8	53
38	Therapeutic Applications of Sugar-Mimicking Glycosidase Inhibitors. Mini-Reviews in Medicinal Chemistry, 2001, 1, 145-154.	2.4	52
39	Inhibition of endoplasmic reticulum glucosidases is required for inÂvitro and inÂvivo dengue antiviral activity by the iminosugar UV-4. Antiviral Research, 2016, 129, 93-98.	4.1	52
40	Looking-Glass Synergistic Pharmacological Chaperones: DGJ and L-DGJ from the Enantiomers of Tagatose. Organic Letters, 2011, 13, 4064-4067.	4.6	51
41	Dihydroxynortropane alkaloids from calystegine-producing plants. Phytochemistry, 2001, 57, 721-726.	2.9	50
42	Synthesis and Glycosidase Inhibition of the Enantiomer of (â^')-Steviamine, the First Example of a New Class of Indolizidine Alkaloid. Organic Letters, 2010, 12, 2562-2565.	4.6	48
43	Calystegin N1, a novel nortropane alkaloid with a bridgehead amino group from Hyoscyamus niger: structure determination and glycosidase inhibitory activities. Carbohydrate Research, 1996, 284, 169-178.	2.3	47
44	Effects of the Prostaglandin E1 Analog Limaprost on Mechanical Allodynia Caused by Chemotherapeutic Agents in Mice. Journal of Pharmacological Sciences, 2009, 109, 469-472.	2.5	47
45	l-DMDP, l-homoDMDP and their C-3 fluorinated derivatives: synthesis and glycosidase-inhibition. Organic and Biomolecular Chemistry, 2011, 9, 3405.	2.8	47
46	Synthesis of Eight Stereoisomers of Pochonicine: Nanomolar Inhibition of \hat{l}^2 - <i>N</i> -Acetylhexosaminidases. Journal of Organic Chemistry, 2013, 78, 10298-10309.	3.2	47
47	Synthetic Chemical Inducers and Genetic Decoupling Enable Orthogonal Control of the <i>rhaBAD</i> Promoter. ACS Synthetic Biology, 2016, 5, 1136-1145.	3.8	47
48	Docking study and biological evaluation of pyrrolidine-based iminosugars as pharmacological chaperones for Gaucher disease. Organic and Biomolecular Chemistry, 2016, 14, 1039-1048.	2.8	46
49	Synthesis of the naringinase inhibitors l-swainsonine and related 6-C-methyl-l-swainsonine analogues: (6R)-C-methyl-l-swainsonine is a more potent inhibitor of l-rhamnosidase by an order of magnitude than l-swainsonine. Tetrahedron Letters, 2008, 49, 179-184.	1.4	44
50	<i>C</i> -Branched Iminosugars: α-Glucosidase Inhibition by Enantiomers of isoDMDP, isoDGDP, and isoDABâ€" <scp>-isoDMDP Compared to Miglitol and Miglustat. Journal of Organic Chemistry, 2013, 78, 7380-7397.</scp>	3.2	44
51	Synthesis of Fully Substituted Polyhydroxylated Pyrrolizidines via Cope–House Cyclization. Organic Letters, 2011, 13, 4414-4417.	4.6	43
52	Synthesis and Glycosidase Inhibition of Australine and Its Fluorinated Derivatives. Organic Letters, 2015, 17, 716-719.	4.6	43
53	Steviamine, a new indolizidine alkaloid from Stevia rebaudiana. Phytochemistry Letters, 2010, 3, 136-138.	1.2	42
54	Cystic fibrosis and diabetes: isoLAB and isoDAB, enantiomeric carbon-branched pyrrolidine iminosugars. Tetrahedron Letters, 2010, 51, 4170-4174.	1.4	42

#	Article	IF	Citations
55	Selection of the biological activity of DNJ neoglycoconjugates through click length variation of the side chain. Organic and Biomolecular Chemistry, 2011, 9, 5373.	2.8	42
56	Scalable Syntheses of Both Enantiomers of DNJNAc and DGJNAc from Glucuronolactone: The Effect of <i>N</i> â€Alkylation on Hexosaminidase Inhibition. Chemistry - A European Journal, 2012, 18, 9341-9359.	3.3	42
57	General synthesis and biological evaluation of \hat{l} ±-1-C-substituted derivatives of fagomine (2-deoxynojirimycin- \hat{l} ±-C-glycosides). Bioorganic and Medicinal Chemistry, 2005, 13, 2313-2324.	3.0	40
58	Looking glass inhibitors: both enantiomeric N-benzyl derivatives of 1,4-dideoxy-1,4-imino-d-lyxitol [a potent competitive inhibitor of \hat{l} ±-d-galactosidase] and of 1,4-dideoxy-1,4-imino-l-lyxitol [a weak competitive inhibitor of \hat{l} ±-d-galactosidase] inhibit naringinase, an \hat{l} ±-l-rhamnosidase competitively. Tetrahedron: Asymmetry, 2009, 20, 2368-2373.	1.8	40
59	Looking glass inhibitors: synthesis of a potent naringinase inhibitor l-DIM $[1,4\text{-}dideoxy-1,4\text{-}imino-d-mannitol}]$, the enantiomer of DIM $[1,4\text{-}dideoxy-1,4\text{-}imino-d-mannitol}]$ a potent f	1.8	39
60	The synthesis and biological evaluation of 1-C-alkyl-l-arabinoiminofuranoses, a novel class of $\hat{l}\pm -glucosidase$ inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 738-741.	2.2	39
61	Synthesis of both enantiomers of hydroxypipecolic acid derivatives equivalent to 5-azapyranuronic acids and evaluation of their inhibitory activities against glycosidases. Bioorganic and Medicinal Chemistry, 2008, 16, 8273-8286.	3.0	38
62	Calystegine alkaloids from Duboisia leichhardtii. Phytochemistry, 1997, 45, 425-429.	2.9	37
63	Alkaloids from the Poisonous PlantIpomoea carnea:Â Effects on Intracellular Lysosomal Glycosidase Activities in Human Lymphoblast Cultures. Journal of Agricultural and Food Chemistry, 2003, 51, 7642-7646.	5.2	37
64	Glycosidase Inhibition by All 10 Stereoisomeric 2,5-Dideoxy-2,5-iminohexitols Prepared from the Enantiomers of Glucuronolactone. Journal of Organic Chemistry, 2012, 77, 7777-7792.	3.2	37
65	Iminosugars from Baphia nitida Lodd Phytochemistry, 2008, 69, 1261-1265.	2.9	36
66	Design and Synthesis of Labystegines, Hybrid Iminosugars from LAB and Calystegine, as Inhibitors of Intestinal \hat{l}_{\pm} -Glucosidases: Binding Conformation and Interaction for ntSI. Journal of Organic Chemistry, 2015, 80, 4501-4515.	3.2	36
67	2,5-Dideoxy-2,5-imino-d-altritol as a new class of pharmacological chaperone for Fabry disease. Bioorganic and Medicinal Chemistry, 2010, 18, 3790-3794.	3.0	35
68	4-C-Me-DAB and 4-C-Me-LABâ€"enantiomeric alkyl-branched pyrrolidine iminosugarsâ€"are specific and potent α-glucosidase inhibitors; acetone as the sole protecting group. Tetrahedron Letters, 2011, 52, 219-223.	1.4	35
69	General Synthesis of Sugar-Derived Azepane Nitrones: Precursors of Azepane Iminosugars. Journal of Organic Chemistry, 2013, 78, 3208-3221.	3.2	35
70	Inhibition of Nonmammalian Glycosidases by Azetidine Iminosugars Derived from Stable 3,5-Di-O-triflates of Pentoses. Organic Letters, 2011, 13, 5834-5837.	4.6	34
71	Total Synthesis and Glycosidase Inhibition of Broussonetine I and J ₂ . Journal of Organic Chemistry, 2013, 78, 7896-7902.	3.2	31
72	Evaluation of Amino Acid-Mustard Transport as L-Type Amino Acid Transporter 1 (LAT1)-Mediated Alkylating Agents. Biological and Pharmaceutical Bulletin, 2008, 31, 2126-2130.	1.4	30

#	Article	IF	CITATIONS
73	Nine of 16 Stereoisomeric Polyhydroxylated Proline Amides Are Potent \hat{l}^2 -N-Acetylhexosaminidase Inhibitors. Journal of Organic Chemistry, 2014, 79, 3398-3409.	3.2	30
74	Phytogenic Polyphenols as Glycogen Phosphorylase Inhibitors: The Potential of Triterpenes and Flavonoids for Glycaemic Control in Type 2 Diabetes. Current Medicinal Chemistry, 2017, 24, 384-403.	2.4	30
75	Sourcing the affinity of flavonoids for the glycogen phosphorylase inhibitor site via crystallography, kinetics and QM/MM-PBSA binding studies: Comparison of chrysin and flavopiridol. Food and Chemical Toxicology, 2013, 61, 14-27.	3 . 6	29
76	NHC-mediated cross-coupling of sugar-derived cyclic nitrones with enals: general and efficient synthesis of polyhydroxylated pyrrolizidines and indolizidines. Organic and Biomolecular Chemistry, 2013, 11, 4622.	2.8	29
77	Synthesis of 1,2- $\langle i \rangle$ cis $\langle i \rangle$ -Homoiminosugars Derived from GlcNAc and GalNAc Exploiting a \hat{l}^2 -Amino Alcohol Skeletal Rearrangement. Organic Letters, 2014, 16, 5512-5515.	4.6	29
78	Biological activities of 3,4,5â€trihydroxypiperidines and their <i>N</i> à€•and <i>O</i> â€derivatives. Chemical Biology and Drug Design, 2018, 92, 1171-1197.	3.2	29
79	Enzymatic synthesis of the glycosides of calystegines B1 and B2 and their glycosidase inhibitory activities. Carbohydrate Research, 1997, 304, 173-178.	2.3	28
80	First total synthesis of (+)-broussonetine W: glycosidase inhibition of natural product & amp; analogs. Organic and Biomolecular Chemistry, 2016, 14, 5157-5174.	2.8	28
81	Multivalency To Inhibit and Discriminate Hexosaminidases. Chemistry - A European Journal, 2017, 23, 9022-9025.	3.3	28
82	ToP-DNJ, a Selective Inhibitor of Endoplasmic Reticulum \hat{l}_{\pm} -Glucosidase II Exhibiting Antiflaviviral Activity. ACS Chemical Biology, 2018, 13, 60-65.	3.4	28
83	The inhibitory action of pyrrolidine alkaloid, 1,4-dideoxy-1,4-imino-d-ribitol, on eukaryotic DNA polymerases. Biochemical and Biophysical Research Communications, 2003, 304, 78-85.	2.1	27
84	Synthesis of 2-acetamido-1,2-dideoxy-d-galacto-nojirimycin [DGJNAc] from d-glucuronolactone: the first sub-micromolar inhibitor of α-N-acetylgalactosaminidases. Tetrahedron Letters, 2010, 51, 2222-2224.	1.4	27
85	Synthesis of uronic-Noeurostegine – a potent bacterial β-glucuronidase inhibitor. Organic and Biomolecular Chemistry, 2011, 9, 7807.	2.8	27
86	Glucosylceramide Mimics: Highly Potent GCase Inhibitors and Selective Pharmacological Chaperones for Mutations Associated with Typesâ€1 and 2 Gaucher Disease. ChemMedChem, 2013, 8, 1805-1817.	3.2	27
87	N- and C-alkylation of seven-membered iminosugars generates potent glucocerebrosidase inhibitors and F508del-CFTR correctors. Organic and Biomolecular Chemistry, 2014, 12, 8977-8996.	2.8	26
88	Azetidine Iminosugars from the Cyclization of 3,5-Di- $\langle i \rangle$ O $\langle i \rangle$ -triflates of α-Furanosides and of 2,4-Di- $\langle i \rangle$ O $\langle i \rangle$ -triflates of β-Pyranosides Derived from Glucose. Organic Letters, 2012, 14, 2142-2145.	4.6	25
89	Tuning of \hat{l}^2 -glucosidase and $\hat{l}\pm$ -galactosidase inhibition by generation and in situ screening of a library of pyrrolidine-triazole hybrid molecules. European Journal of Medicinal Chemistry, 2017, 138, 532-542.	5. 5	25
90	Total Synthesis of Natural Hyacinthacine C ₅ and Six Related Hyacinthacine C ₅ Epimers. Journal of Organic Chemistry, 2018, 83, 5558-5576.	3.2	25

#	Article	IF	CITATIONS
91	Docking and SAR studies of d- and l-isofagomine isomers as human \hat{l}^2 -glucocerebrosidase inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 3558-3568.	3.0	24
92	Iteamine, the first alkaloid isolated from Itea virginica L. inflorescence. Phytochemistry, 2014, 100, 126-131.	2.9	24
93	3-Fluoroazetidinecarboxylic Acids and <i>trans,trans-</i> 3,4-Difluoroproline as Peptide Scaffolds: Inhibition of Pancreatic Cancer Cell Growth by a Fluoroazetidine Iminosugar. Journal of Organic Chemistry, 2015, 80, 4244-4258.	3.2	24
94	Two Subsites on the Active Center of Pig Kidney Trehalase. FEBS Journal, 1996, 240, 692-698.	0.2	23
95	3â€Hydroxyazetidine Carboxylic Acids: Nonâ€Proteinogenic Amino Acids for Medicinal Chemists. ChemMedChem, 2013, 8, 658-666.	3.2	23
96	Effects of eugenol-reduced clove extract on glycogen phosphorylase b and the development of diabetes in db/db mice. Food and Function, 2014, 5, 214-219.	4.6	22
97	Homochiral carbon branched piperidines from carbon branched sugar lactones: 4-C-methyl-deoxyfuconojirimycin (DFJ) and its enantiomer—removal of glycosidase inhibition. Tetrahedron: Asymmetry, 2007, 18, 500-512.	1.8	21
98	Synthesis from <scp>d</scp> -Altrose of (5 <i>R</i> ,6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i>)-5,7-Dihydroxy-8-hydroxymethylconidine and 2,4-Dideoxy-2,4-imino- <scp>d</scp> -glucitol, Azetidine Analogues of Swainsonine and 1,4-Dideoxy-1,4-imino- <scp>d</scp> -mannitol. Organic Letters, 2012, 14, 4174-4177.	4.6	21
99	Synthesis of 1,2- <i>trans</i> -2-Acetamido-2-deoxyhomoiminosugars. Organic Letters, 2014, 16, 5516-5519.	4.6	21
100	1β-amino-2α,3β,5β-trihydroxycycloheptane from Physalis alkekengi var. francheti. Phytochemistry, 1996, 42, 719-721.	2.9	20
101	Synthesis of the enantiomers of XYLNAc and LYXNAc: comparison of \hat{l}^2 -N-acetylhexosaminidase inhibition by the 8 stereoisomers of 2-N-acetylamino-1,2,4-trideoxy-1,4-iminopentitols. Organic and Biomolecular Chemistry, 2014, 12, 3932.	2.8	20
102	Synthesis of all stereoisomers of 3-hydroxypipecolic acid and 3-hydroxy-4,5-dehydropipecolic acid and their evaluation as glycosidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1810-1813.	2.2	19
103	Towards a stable noeuromycin analog with a d-manno configuration: Synthesis and glycosidase inhibition of d-manno-like tri- and tetrahydroxylated azepanes. Bioorganic and Medicinal Chemistry, 2012, 20, 641-649.	3.0	19
104	Synthetic deoxynojirimycin derivatives bearing a thiolated, fluorinated or unsaturated N-alkyl chain: identification of potent î±-glucosidase and trehalase inhibitors as well as F508del-CFTR correctors. Organic and Biomolecular Chemistry, 2015, 13, 10734-10744.	2.8	19
105	Gem-difluoromethylated and trifluoromethylated derivatives of DMDP-related iminosugars: synthesis and glycosidase inhibition. Organic and Biomolecular Chemistry, 2016, 14, 2249-2263.	2.8	19
106	An expeditious synthesis of an analogue of (\hat{a}°) -steviamine by way of the 1,3-dipolar cycloaddition of a nitrile oxide with a 1-C-allyl iminosugar. Tetrahedron Letters, 2011, 52, 6399-6402.	1.4	18
107	Fluorinated Radicamine A and B: Synthesis and Glycosidase Inhibition. European Journal of Organic Chemistry, 2016, 2016, 1429-1438.	2.4	18
108	<i>In silico ⟨i⟩ analyses of essential interactions of iminosugars with the Hex A active site and evaluation of their pharmacological chaperone effects for Tay–Sachs disease. Organic and Biomolecular Chemistry, 2017, 15, 9297-9304.</i>	2.8	18

#	Article	IF	Citations
109	Isolation and SAR studies of bicyclic iminosugars from Castanospermum australe as glycosidase inhibitors. Phytochemistry, 2015, 111, 124-131.	2.9	17
110	Structural essentials for \hat{l}^2 -N-acetylhexosaminidase inhibition by amides of prolines, pipecolic and azetidine carboxylic acids. Organic and Biomolecular Chemistry, 2016, 14, 10371-10385.	2.8	17
111	Exploring substituent diversity on pyrrolidine-aryltriazole iminosugars: Structural basis of \hat{l}^2 -glucocerebrosidase inhibition. Bioorganic Chemistry, 2019, 86, 652-664.	4.1	17
112	Synthesis and glycosidase inhibition of N-substituted derivatives of 1,4-dideoxy-1,4-imino-d-mannitol (DIM). Organic and Biomolecular Chemistry, 2020, 18, 999-1011.	2.8	17
113	Alkaloids inhibiting l-histidine decarboxylase from Sinomenium acutum. Phytochemistry Letters, 2009, 2, 77-80.	1.2	16
114	6,7-Dihydroxy-4-phenylcoumarin as inhibitor of aldose reductase 2. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5630-5633.	2.2	16
115	Fluorinated and Conformationally Fixed Derivatives of <scp> < scp>-HomoDMDP: Synthesis and Glycosidase Inhibition. Journal of Organic Chemistry, 2015, 80, 5151-5158.</scp>	3.2	16
116	Synthesis of multimeric pyrrolidine iminosugar inhibitors of human \hat{l}^2 -glucocerebrosidase and \hat{l}_2 -galactosidase A: First example of a multivalent enzyme activity enhancer for Fabry disease. European Journal of Medicinal Chemistry, 2020, 192, 112173.	5.5	16
117	A concise stereoselective synthesis of (\hat{a}°) -erycibelline. Organic and Biomolecular Chemistry, 2011, 9, 7713.	2.8	15
118	Eight Stereoisomers of Homonojirimycin from <scp>d</scp> -Mannose. Organic Letters, 2012, 14, 2050-2053.	4.6	15
119	Synthesis and characterization of novel, conjugated, fluorescent DNJ derivatives for α-glucosidase recognition. Bioorganic and Medicinal Chemistry, 2017, 25, 773-778.	3.0	15
120	Characterizing the selectivity of ER α-glucosidase inhibitors. Glycobiology, 2019, 29, 530-542.	2.5	15
121	Synthesis, Conformational Analysis, and Evaluation as Glycosidase Inhibitors of Two Ether-Bridged Iminosugars. Journal of Carbohydrate Chemistry, 2011, 30, 641-654.	1.1	14
122	An approach to 8 stereoisomers of homonojirimycin from d-glucose via kinetic & mp; thermodynamic azido-l³-lactones. Organic and Biomolecular Chemistry, 2013, 11, 6886.	2.8	14
123	Protective Effects of Dietary 1,5-Anhydro-d-glucitol as a Blood Glucose Regulator in Diabetes and Metabolic Syndrome. Journal of Agricultural and Food Chemistry, 2013, 61, 611-617.	5.2	14
124	Discovery of hyaluronidase inhibitors from natural products and their mechanistic characterization under DMSO-perturbed assay conditions. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1620-1623.	2.2	14
125	Isolation of the pyrrolizidine alkaloid 1-epialexine from Castanospermum australe. Phytochemistry Letters, 2010, 3, 133-135.	1.2	13
126	Calystegine B3 as a specific inhibitor for cytoplasmic Â-mannosidase, Man2C1. Journal of Biochemistry, 2011, 149, 415-422.	1.7	13

#	Article	IF	Citations
127	Docking and SAR studies of calystegines: Binding orientation and influence on pharmacological chaperone effects for Gaucher's disease. Bioorganic and Medicinal Chemistry, 2014, 22, 2435-2441.	3.0	13
128	Stable analogues of nojirimycin – synthesis and biological evaluation of nojiristegine and manno-nojiristegine. Organic and Biomolecular Chemistry, 2015, 13, 9637-9658.	2.8	13
129	Epimerization of C5 of an N-hydroxypyrrolidine in the synthesis of swainsonine related iminosugars. Organic and Biomolecular Chemistry, 2016, 14, 4488-4498.	2.8	13
130	Synthesis and glycosidase inhibition of 5-C-alkyl-DNJ and 5-C-alkyl-l-ido-DNJ derivatives. European Journal of Medicinal Chemistry, 2021, 224, 113716.	5.5	13
131	An α-glucoside of 1,4-dideoxy-1,4-imino-d-lyxitol with an eleven carbon side chain. Phytochemistry Letters, 2010, 3, 230-233.	1.2	12
132	Selective trihydroxylated azepane inhibitors of NagZ, a glycosidase involved in Pseudomonas aeruginosa resistance to β-lactam antibiotics. Organic and Biomolecular Chemistry, 2017, 15, 4609-4619.	2.8	12
133	Synthesis and Glycosidase Inhibition of Broussonetine M and Its Analogues. Molecules, 2019, 24, 3712.	3.8	12
134	Design, synthesis, and biological evaluation of novel (1-thioxo-1,2,3,4-tetrahydro- $\hat{1}^2$ -carbolin-9-yl)acetic acids as selective inhibitors for AKR1B1. Bioorganic and Medicinal Chemistry, 2012, 20, 356-367.	3.0	11
135	Skeletal rearrangement of seven-membered iminosugars: Synthesis of (â^')-adenophorine, (â^')-1-epi-adenophorine and derivatives and evaluation as glycosidase inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 4803-4812.	3.0	11
136	Synthesis of new tricyclic thiolactams as potent antitumor agent for pancreatic cancer. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2577-2579.	2,2	11
137	Synthesis of 3-(2-nitrovinyl)-4H-chromones: useful scaffolds for the construction of biologically relevant 3-(pyrazol-5-yl)chromones. Tetrahedron, 2016, 72, 3198-3203.	1.9	11
138	5- <i>C</i> -Branched Deoxynojirimycin: Strategy for Designing a 1-Deoxynojirimycin-Based Pharmacological Chaperone with a Nanomolar Affinity for Pompe Disease. Journal of Medicinal Chemistry, 2022, 65, 2329-2341.	6.4	11
139	Novel 2-aryl-3,4,5-trihydroxypiperidines: Synthesis and glycosidase inhibition. Chinese Chemical Letters, 2013, 24, 1059-1063.	9.0	10
140	Synthesis and biological evaluation of α-1-C-4′-arylbutyl-l-arabinoiminofuranoses, a new class of α-glucosidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3298-3301.	2,2	10
141	Concise synthesis of calystegines B ₂ and B ₃ via intramolecular Nozaki–Hiyama–Kishi reaction. Organic and Biomolecular Chemistry, 2016, 14, 4885-4896.	2.8	10
142	Strategy for designing selective $\hat{l}\pm l$ -rhamnosidase inhibitors: Synthesis and biological evaluation of l-DMDP cyclic isothioureas. Bioorganic and Medicinal Chemistry, 2017, 25, 107-115.	3.0	10
143	Design of a New \hat{l} ±-1-C-Alkyl-DAB Derivative Acting as a Pharmacological Chaperone for \hat{l}^2 -Glucocerebrosidase Using Ligand Docking and Molecular Dynamics Simulation. Molecules, 2018, 23, 2683.	3.8	10
144	2â€Acetamidoâ€2â€deoxyâ€ <scp>l</scp> â€iminosugar <i>C</i> â€Alkyl and <i>C</i> â€Aryl Glycosides: Synthes Glycosidase Inhibition. European Journal of Organic Chemistry, 2018, 2018, 5477-5488.	is and	10

#	Article	IF	Citations
145	Corrected Structure of Natural Hyacinthacine C ₁ via Total Synthesis. Journal of Natural Products, 2019, 82, 358-367.	3.0	10
146	Strategy for Designing Selective Lysosomal Acid \hat{l}_{\pm} -Glucosidase Inhibitors: Binding Orientation and Influence on Selectivity. Molecules, 2020, 25, 2843.	3.8	10
147	ASYMMETRIC SYNTHESIS OF 1-ALKYL-2-DEOXYIMINOFURANOSES VIA THE IRIDIUM-CATALYZED INTRAMOLECULAR CYCLIZATION OF AN ALLYLIC CARBONATE. Heterocycles, 2012, 86, 1401.	0.7	9
148	Asymmetric Synthesis of 2-Propylisofagomine Using Allylic Hydroxy Group Accelerated Ring-Closing Enyne Metathesis. Heterocycles, 2012, 84, 929.	0.7	9
149	Synthesis of phenylalkyl-substituted polyhydroxypiperidines asÂpotent inhibitors for α-l-fucosidase. Tetrahedron, 2013, 69, 10653-10661.	1.9	8
150	6â€Deoxyhexoses from <scp> </scp> â€Rhamnose in the Search for Inducers of the Rhamnose Operon: Synergy of Chemistry and Biotechnology. Chemistry - A European Journal, 2016, 22, 12557-12565.	3.3	8
151	Design and synthesis of N–acetylglucosamine derived 5a-carbasugar analogues as glycosidase inhibitors. Tetrahedron, 2018, 74, 1957-1964.	1.9	8
152	Synthetic Routes to 3,4,5â€Trihydroxypiperidines via Stereoselective and Biocatalysed Protocols, and Strategies to <i>N</i> †and <i>O</i> â€Derivatisation. European Journal of Organic Chemistry, 2018, 2018, 6830-6842.	2.4	8
153	(3R,4S,5R,6R,7S)-3,4,5,7-Tetrahydroxyconidine, an azetidine analogue of 6,7-diepicastanospermine and a conformationally constrained d-deoxyaltronojirimycin, from l-arabinose. Bioorganic and Medicinal Chemistry, 2013, 21, 4813-4819.	3.0	7
154	Synthesis of pyrrolidine-based analogues of 2-acetamidosugars asÂN-acetyl-d-glucosaminidase inhibitors. Carbohydrate Research, 2015, 409, 56-62.	2.3	7
155	Interpreting the behavior of concentration–response curves of hyaluronidase inhibitors under DMSO-perturbed assay conditions. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3153-3157.	2.2	7
156	Discovery of a Potent α-Galactosidase Inhibitor by in Situ Analysis of a Library of Pyrrolizidineâ€"(Thio)urea Hybrid Molecules Generated via Click Chemistry. Journal of Organic Chemistry, 2018, 83, 8863-8873.	3.2	7
157	Synthesis and glycosidase inhibition of conformationally locked DNJ and DMJ derivatives exploiting a 2-oxo- <i>C</i> -allyl iminosugar. Organic and Biomolecular Chemistry, 2019, 17, 7204-7214.	2.8	7
158	Isolation from Stevia rebaudiana of DMDP acetic acid, a novel iminosugar amino acid: synthesis and glycosidase inhibition profile of glycine and \hat{l}^2 -alanine pyrrolidine amino acids. Amino Acids, 2019, 51, 991-998.	2.7	7
159	Stereoselective Total Synthesis of (–)â€Batzellasides A, B, and C. European Journal of Organic Chemistry, 2013, 2013, 2841-2848.	2.4	6
160	Synthesis and biological evaluation of N-(2-fluorophenyl)- $2\hat{l}^2$ -deoxyfuconojirimycin acetamide as a potent inhibitor for l±-l-fucosidases. Bioorganic and Medicinal Chemistry, 2013, 21, 6565-6573.	3.0	6
161	Dual action of acertannins as potential regulators of intracellular ceramide levels. Tetrahedron: Asymmetry, 2016, 27, 1177-1185.	1.8	6
162	Ginnalin B induces differentiation markers and modulates the proliferation/differentiation balance via the upregulation of NOTCH1 in human epidermal keratinocytes. Bioorganic and Medicinal Chemistry, 2019, 27, 2172-2180.	3.0	6

#	Article	IF	CITATIONS
163	Synthesis of Pyrrolidine Monocyclic Analogues of Pochonicine and Its Stereoisomers: Pursuit of Simplified Structures and Potent β-N-Acetylhexosaminidase Inhibition. Molecules, 2020, 25, 1498.	3.8	6
164	Stereocomplementary synthesis of casuarine and its 6-epi-, 7-epi-, and 6,7-diepi-stereoisomers. Organic and Biomolecular Chemistry, 2021, 19, 9410-9420.	2.8	6
165	Calystegine Alkaloids in the Potato and Other Food Plants. ACS Symposium Series, 1999, , 129-139.	0.5	5
166	\hat{l}^3 -Aminoalcohol rearrangement applied to pentahydroxylated azepanes provides pyrrolidines epimeric to homoDMDP. Organic and Biomolecular Chemistry, 2015, 13, 3446-3456.	2.8	5
167	Synthesis and Structural Revision of Glyphaeaside C. Organic Letters, 2021, 23, 4029-4033.	4.6	5
168	Design, synthesis and glycosidase inhibition of C-4 branched LAB and DAB derivatives. European Journal of Medicinal Chemistry, 2022, 233, 114230.	5.5	5
169	Diastereoselective Synthesis, Glycosidase Inhibition, and Docking Study of C-7-Fluorinated Casuarine and Australine Derivatives. Journal of Organic Chemistry, 2022, , .	3.2	5
170	trans, trans-2-C-Aryl-3,4-dihydroxypyrrolidines as potent and selective \hat{l}^2 -glucosidase inhibitors: Pharmacological chaperones for Gaucher disease. European Journal of Medicinal Chemistry, 2022, 238, 114499.	5 . 5	5
171	Enantiodivergent strategy for the synthesis of polyhydroxylated pyrrolizidines and evaluation of their inhibitory activities against glycosidases. Tetrahedron Letters, 2015, 56, 331-334.	1.4	4
172	3-Azidoazetidines as the first scaffolds for \hat{l}^2 -amino azetidine carboxylic acid peptidomimetics: azetidine iminosugars containing an acetamido group do not inhibit \hat{l}^2 - N -acetylhexosaminidases. Tetrahedron: Asymmetry, 2016, 27, 872-881.	1.8	4
173	Divergent synthesis of new α-glucosidase inhibitors obtained through a vinyl Grignard-mediated carbocyclisation. Organic and Biomolecular Chemistry, 2018, 16, 6250-6261.	2.8	4
174	Catalytic asymmetric synthesis of stereoisomers of 1-C-n-butyl-LABs for the SAR study of \hat{l}_{\pm} -glucosidase inhibition. Tetrahedron, 2019, 75, 2866-2876.	1.9	4
175	Iminosugar C â€Glycosides Work as Pharmacological Chaperones of NAGLU, a Glycosidase Involved in MPS IIIB Rare Disease**. Chemistry - A European Journal, 2021, 27, 11291-11297.	3.3	4
176	Borylated 2,3,4,5-Tetrachlorophthalimide and Their 2,3,4,5-Tetrachlorobenzamide Analogues: Synthesis, Their Glycosidase Inhibition and Anticancer Properties in View to Boron Neutron Capture Therapy. Molecules, 2022, 27, 3447.	3.8	4
177	Synthesis and glycosidase inhibition of C-7 modified casuarine derivatives. Chinese Chemical Letters, 2017, 28, 1701-1704.	9.0	3
178	Azobenzene derivatives show anti-cancer activity against pancreatic cancer cells only under nutrient starvation conditions via G0/G1 cell cycle arrest. Tetrahedron, 2021, 85, 132077.	1.9	3
179	Structural variation of the 3-acetamido-4,5,6-trihydroxyazepane iminosugar through epimerization and C-alkylation leads to low micromolar HexAB and NagZ inhibitors. Organic and Biomolecular Chemistry, 2021, , .	2.8	3
180	Synthesis, conformational analysis and glycosidase inhibition of bicyclic nojirimycin C-glycosides based on an octahydrofuro[3,2-b]pyridine motif. Carbohydrate Research, 2022, 511, 108491.	2.3	3

#	Article	IF	CITATIONS
181	Bi(OTf)3-mediated intramolecular epoxide opening for bicyclic azepane synthesis. Journal of Carbohydrate Chemistry, 2019, 38, 139-149.	1.1	2
182	Hanessian-Hullar reaction in the synthesis of highly substituted trans-3,4-dihydroxypyrrolidines: Rhamnulose iminosugar mimics inhibit $\hat{l}\pm$ -glucosidase. Tetrahedron, 2020, 76, 130758.	1.9	2
183	Introduction of <i>C</i> -alkyl branches to <scp>l</scp> -iminosugars changes their active site binding orientation. Organic and Biomolecular Chemistry, 2022, 20, 7250-7260.	2.8	2
184	(2 < i > R < /i > , 3 < i > S < /i >)-3-Hydroxy- $(i > N < /i > , 4 < i > N < /i > -dimethylproline monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, 03717-03717.$	0.2	1
185	Synthesis and Evaluations of GLP-1 Secretion and Anti-Diabetic Effect in KKAy Mice of New Tricyclic Compounds. Heterocycles, 2015, 90, 372.	0.7	1
186	Synthesis and chelation study of a fluoroionophore and a glycopeptide based on an aza crown iminosugar structure. Carbohydrate Research, 2021, 501, 108258.	2.3	1
187	1-O-Benzyl-2,3-O-isopropylidene-6-O-tosyl-î±-L-sorbofuranose. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1069-o1070.	0.2	1
188	Divergent Synthesis of Decahydroquinolineâ€Type Poisonâ€Frog Alkaloids. ChemistrySelect, 2022, 7, .	1.5	1
189	Iminosugar Amino Acid idoBR1 Reduces Inflammatory Responses in Microglia. Molecules, 2022, 27, 3342.	3.8	1
190	Effect of kamikihito on platelet count: Retrospective pilot study. Traditional & Kampo Medicine, 2019, 6, 130-133.	0.6	0
191	Chain-Branched Polyhydroxylated Octahydro-1H-Indoles as Potential Leads against Lysosomal Storage Diseases. Pharmaceuticals, 2019, 12, 47.	3.8	0
192	A divergent entry to 1,2,3,9-tetrahydroxyquinolizidines. Tetrahedron Letters, 2020, 61, 152030.	1.4	0