
Jian Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1447564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitigating Inter-Story Drift Concentration of Concentrically Braced Steel Frames Using Energy-Dissipative Columns. Journal of Earthquake Engineering, 2022, 26, 221-239.	2.5	4
2	A state-of-the-art review on tensile membrane action in reinforced concrete floors exposed to fire. Journal of Building Engineering, 2022, 45, 103502.	3.4	1
3	Improved tensile membrane action model of composite slabs at elevated temperatures. Structures, 2022, 36, 13-31.	3.6	5
4	Experimental study on the dynamic behaviour of expanded-shale lightweight concrete at high strain rate. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	6
5	An insight into eurocode 4 design rules for thermal behaviour of composite slabs. Fire Safety Journal, 2021, 120, 103084.	3.1	4
6	Residual Strength of L-shaped Steel Reinforced Concrete Columns after Exposure to High Temperatures. KSCE Journal of Civil Engineering, 2021, 25, 1369-1384.	1.9	3
7	Modelling concrete slabs subjected to fires using nonlinear layered shell elements and concrete damage-plasticity material. Engineering Structures, 2021, 234, 111977.	5.3	21
8	Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structures, 2021, 245, 112799.	5.3	24
9	Gene signatures from scRNAâ€seq accurately quantify mast cells in biopsies in asthma. Clinical and Experimental Allergy, 2020, 50, 1428-1431.	2.9	16
10	Reduced-Order Modeling of Composite Floor Slabs in Fire. II: Thermal-Structural Analysis. Journal of Structural Engineering, 2020, 146, .	3.4	7
11	Reduced-Order Modeling of Composite Floor Slabs in Fire. I: Heat-Transfer Analysis. Journal of Structural Engineering, 2020, 146, .	3.4	8
12	Investigation on Postfire Residual Capacity of High-Strength Steel Columns with Axial Restraint. Journal of Structural Engineering, 2020, 146, .	3.4	6
13	Dynamic Effects on Steel Frames with Concrete Slabs under a Sudden Edge-Column Removal Scenario. Journal of Structural Engineering, 2020, 146, .	3.4	26
14	Mechanical behavior of cross-shaped steel reinforced concrete columns after exposure to high temperatures. Fire Safety Journal, 2019, 108, 102857.	3.1	13
15	The application of omics-based human liver platforms for investigating the mechanism of drug-induced hepatotoxicity in vitro. Archives of Toxicology, 2019, 93, 3067-3098.	4.2	21
16	Improved calculation method for insulation-based fire resistance of composite slabs. Fire Safety Journal, 2019, 105, 144-153.	3.1	15
17	Cyclic behaviour of bearing-type bolted connections with slot bolt holes. Advances in Structural Engineering, 2019, 22, 792-801.	2.4	3
18	Collapse resistance of RC beam–slab subassemblies due to column loss at large deflections. Magazine of Concrete Research, 2019, 71, 647-663.	2.0	2

Jian Jiang

#	Article	lF	CITATIONS
19	Modeling of Behavior of Continuous Energy-Dissipative Steel Columns Under Cyclic Loads. Journal of Earthquake Engineering, 2019, 23, 1560-1583.	2.5	4
20	Fire tests on full-scale steel portal frames against progressive collapse. Journal of Constructional Steel Research, 2018, 145, 137-152.	3.9	38
21	Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73.	3.1	21
22	Experimental and numerical study on thermal-structural behavior of steel portal frames in real fires. Fire Safety Journal, 2018, 98, 48-62.	3.1	28
23	Seismic behavior of coupled shear wall structures with various concrete and steel coupling beams. Structural Design of Tall and Special Buildings, 2018, 27, e1405.	1.9	9
24	Theoretical investigations on loadâ€bearing capacity of RC flatâ€plate framed structures subject to middle column loss. Structural Design of Tall and Special Buildings, 2018, 27, e1458.	1.9	2
25	Modeling structural behavior of reinforced concrete beam–slab substructures subject to side-column loss at large deflections. Advances in Structural Engineering, 2018, 21, 1051-1071.	2.4	5
26	Experimental study on reinforced concrete frames with two-side connected buckling-restrained steel plate shear walls. Advances in Structural Engineering, 2018, 21, 460-473.	2.4	3
27	Quantitative evaluation of progressive collapse process of steel portal frames in fire. Journal of Constructional Steel Research, 2018, 150, 277-287.	3.9	15
28	Analytical modeling on collapse resistance of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 2018, 169, 238-255.	5.3	25
29	Experimental investigation on thermal and mechanical behaviour of composite floors exposed to standard fire. Fire Safety Journal, 2017, 89, 63-76.	3.1	44
30	Disproportionate collapse of 3D steel-framed structures exposed to various compartment fires. Journal of Constructional Steel Research, 2017, 138, 594-607.	3.9	38
31	Elevated temperature and hole-type effects on sliding behaviour of bolted connections. Advances in Structural Engineering, 2017, 20, 1962-1970.	2.4	0
32	An improved consecutive modal pushover procedure for estimating seismic demands of multi-storey framed buildings. Structural Design of Tall and Special Buildings, 2017, 26, e1336.	1.9	9
33	Progressive collapse analysis of 3D steel frames with concrete slabs exposed to localized fire. Engineering Structures, 2017, 149, 21-34.	5.3	58
34	Analysis of Composite Steel-concrete Beams Exposed to Fire using OpenSees. Journal of Structural Fire Engineering, 2015, 6, 1-20.	0.8	5
35	Fire safety assessment of super tall buildings: A case study on Shanghai Tower. Case Studies in Fire Safety, 2015, 4, 28-38.	1.0	12
36	Effect of Bracing Systems on Fire-Induced Progressive Collapse of Steel Structures Using OpenSees. Fire Technology, 2015, 51, 1249-1273.	3.0	37

Jian Jiang

#	Article	IF	CITATIONS
37	<i>OpenSees</i> Software Architecture for the Analysis of Structures in Fire. Journal of Computing in Civil Engineering, 2015, 29, .	4.7	44
38	Progressive Collapse Resistance of Braced Steel Frames Exposed to Fire. , 2014, , .		4
39	Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264.	2.4	21
40	Progressive Collapse Mechanisms of Steel Frames Exposed to Fire. Advances in Structural Engineering, 2014, 17, 381-398.	2.4	35
41	Influence of fire scenarios on progressive collapse mechanisms of steel framed structures. Steel Construction, 2014, 7, 169-172.	0.8	8
42	Vibration control of cables with damped flexible end restraint: Theoretical model and experimental verification. Journal of Sound and Vibration, 2013, 332, 3626-3645.	3.9	11
43	Modeling of steel frame structures in fire using OpenSees. Computers and Structures, 2013, 118, 90-99.	4.4	60
44	Biodegradation-induced surface change of polymer microspheres and its influence on cell growth. Polymer Degradation and Stability, 2010, 95, 1356-1364.	5.8	14