
Jian Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1447564/publications.pdf Version: 2024-02-01

2 Progressive collapse analysis of 3D steel frames with concrete slabs exposed to localized fire. 3 (1) OpenSees.(1): Software Architecture for the Analysis of Structures in Fire. Journal of Computing in Cwil Engineering, 2015, 29 4 Experimental investigation on thermal and mechanical behaviour of composite floors exposed to standard fire. Fire Safety Journal, 2017, 89, 63-76. 5 Disproportionate collapse of 3D steel framed structures exposed to various compartment fires. 6 Fire tests on full-scale steel portal frames against progressive collapse. Journal of Constructional Steel Research, 2015, 1249-1273. 7 Effect of Bracing Systems on Fire-Induced Progressive Collapse of Steel Structures Using OpenSees. 8 Progressive Collapse Mechanisms of Steel Frames Exposed to Fire. Advances in Structural Engineering. 2014, 17, 381-398. 9 Experimental and numerical study on thermal-structural behavior of steel portal frames in real fires. Fire Safety Journal, 2018, 98, 48-62. 10 Dynamic Effects on Steel Frames with Concrete Slabs under a Sudden Edge-Column Removal Scenario. Journal of Structureal Engineering, 2020, 146, . 11 Analytical modeling on collapse resistance of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 102, 238-255. 12 Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structures, 2021, 245, 112799. 13 Modelling of Struct-Concrete Comp	4.4	
 Engineering Structures, 2017, 149, 21-34. ch-OpenSees-(h): Software Architecture for the Analysis of Structures in Fire. Journal of Computing in Chill Engineering, 2015, 29, . Experimental investigation on thermal and mechanical behaviour of composite floors exposed to standard fire. Fire Safety Journal, 2017, 89, 63-76. Disproportionate collapse of 3D steel-framed structures exposed to various compartment fires. Journal of Constructional Steel Research, 2017, 138, 594-607. Fire tests on full-scale steel portal frames against progressive collapse. Journal of Constructional Steel Research, 2018, 145, 137-152. Effect of Bracing Systems on Fire-Induced Progressive Collapse of Steel Structures Using OpenSees. Fire Technology, 2015, 51, 1249-1273. Progressive Collapse Mechanisms of Steel Frames Exposed to Fire. Advances in Structural Engineering, 2014, 17, 381-398. Experimental and numerical study on thermal-structural behavior of steel portal frames in real fires. Fire Safety Journal, 2018, 98, 48-62. Dynamic Effects on Steel Frames with Concrete Slabs under a Sudden Edge-Column Removal Scenario. Journal of Structural Engineering, 2020, 146, . Dynamic Effects on Steel Frames of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 2018, 169, 238-255. Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structures, 2021, 245, 112799. Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 		60
 in Civil Engineering, 2015, 29,. Experimental investigation on thermal and mechanical behaviour of composite floors exposed to standard fire. Fire Safety Journal, 2017, 89, 63-76. Disproportionate collapse of 3D steel-framed structures exposed to various compartment fires. Journal of Constructional Steel Research, 2017, 138, 594-607. Fire tests on full-scale steel portal frames against progressive collapse. Journal of Constructional Steel Research, 2018, 145, 137-152. Effect of Bracing Systems on Fire-Induced Progressive Collapse of Steel Structures Using OpenSees. Fire Technology, 2015, 51, 1249-1273. Progressive Collapse Mechanisms of Steel Frames Exposed to Fire. Advances in Structural Engineering, 2014, 17, 381-398. Experimental and numerical study on thermal-structural behavior of steel portal frames in real fires. Fire Safety Journal, 2018, 98, 48-62. Dynamic Effects on Steel Frames with Concrete Slabs under a Sudden Edge-Column Removal Scenario. Journal of Structural Engineering, 2020, 146, . Analytical modeling on collapse resistance of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 2018, 169, 238-255. Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structures, 2021, 245, 112799. Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 	5.3	58
 standard fire. Fire Safety Journal, 2017, 89, 63-76. Disproportionate collapse of 3D steel-framed structures exposed to various compartment fires. Journal of Constructional Steel Research, 2017, 138, 594-607. Fire tests on full-scale steel portal frames against progressive collapse. Journal of Constructional Steel Research, 2018, 145, 137-152. Effect of Bracing Systems on Fire-Induced Progressive Collapse of Steel Structures Using OpenSees. Fire Technology, 2015, 51, 1249-1273. Progressive Collapse Mechanisms of Steel Frames Exposed to Fire. Advances in Structural Engineering, 2014, 17, 381-398. Experimental and numerical study on thermal-structural behavior of steel portal frames in real fires. Fire Safety Journal, 2018, 98, 48-62. Dynamic Effects on Steel Frames with Concrete Slabs under a Sudden Edge-Column Removal Scenario. Journal of Structural Engineering, 2020, 146, . Analytical modeling on collapse resistance of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 2018, 169, 238-255. Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structural Engineering, 2014, 17, 249-264. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 	4.7	44
 Journal of Constructional Steel Research, 2017, 138, 594-607. Fire tests on full-scale steel portal frames against progressive collapse. Journal of Constructional Steel Research, 2018, 145, 137-152. Effect of Bracing Systems on Fire-Induced Progressive Collapse of Steel Structures Using OpenSees. Fire Technology, 2015, 51, 1249-1273. Progressive Collapse Mechanisms of Steel Frames Exposed to Fire. Advances in Structural Engineering, 2014, 17, 381-398. Experimental and numerical study on thermal-structural behavior of steel portal frames in real fires. Fire Safety Journal, 2018, 98, 48-62. Dynamic Effects on Steel Frames with Concrete Slabs under a Sudden Edge-Column Removal Scenario. Journal of Structural Engineering, 2020, 146, . Analytical modeling on collapse resistance of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 2018, 169, 238-255. Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structures, 2021, 245, 112799. Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 	3.1	44
 Steel Research, 2018, 145, 137-152. Effect of Bracing Systems on Fire-Induced Progressive Collapse of Steel Structures Using OpenSees. Fire Technology, 2015, 51, 1249-1273. Progressive Collapse Mechanisms of Steel Frames Exposed to Fire. Advances in Structural Engineering, 2014, 17, 381-398. Experimental and numerical study on thermal-structural behavior of steel portal frames in real fires. Fire Safety Journal, 2018, 98, 48-62. Dynamic Effects on Steel Frames with Concrete Slabs under a Sudden Edge-Column Removal Scenario. Journal of Structural Engineering, 2020, 146, . Analytical modeling on collapse resistance of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 2018, 169, 238-255. Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structural Engineering, 2014, 17, 249-264. Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 	3.9	38
 Fire Technology, 2015, 51, 1249-1273. Progressive Collapse Mechanisms of Steel Frames Exposed to Fire. Advances in Structural Engineering, 2014, 17, 381-398. Experimental and numerical study on thermal-structural behavior of steel portal frames in real fires. Fire Safety Journal, 2018, 98, 48-62. Dynamic Effects on Steel Frames with Concrete Slabs under a Sudden Edge-Column Removal Scenario. Journal of Structural Engineering, 2020, 146, . Analytical modeling on collapse resistance of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 2018, 169, 238-255. Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structures, 2021, 245, 112799. Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 	3.9	38
 2014, 17, 381-398. Experimental and numerical study on thermal-structural behavior of steel portal frames in real fires. Fire Safety Journal, 2018, 98, 48-62. Dynamic Effects on Steel Frames with Concrete Slabs under a Sudden Edge-Column Removal Scenario. Journal of Structural Engineering, 2020, 146, . Analytical modeling on collapse resistance of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 2018, 169, 238-255. Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structures, 2021, 245, 112799. Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 	3.0	37
 Fire Safety Journal, 2018, 98, 48-62. Dynamic Effects on Steel Frames with Concrete Slabs under a Sudden Edge-Column Removal Scenario. Journal of Structural Engineering, 2020, 146, . Analytical modeling on collapse resistance of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 2018, 169, 238-255. Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structures, 2021, 245, 112799. Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 	2.4	35
 Journal of Structural Engineering, 2020, 146, . Analytical modeling on collapse resistance of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 2018, 169, 238-255. Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structures, 2021, 245, 112799. Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 	3.1	28
 ¹¹ subjected to side column loss. Engineering Structures, 2018, 169, 238-255. ¹² Disproportionate collapse of steel-framed gravity buildings under travelling fires. Engineering Structures, 2021, 245, 112799. ¹³ Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264. ¹⁴ Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. ¹⁵ The application of omics-based human liver platforms for investigating the mechanism of 	3.4	26
 Structures, 2021, 245, 112799. Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 	5.3	25
 Engineering, 2014, 17, 249-264. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 	5.3	24
 temperatures. Fire Safety Journal, 2018, 96, 59-73. The application of omics-based human liver platforms for investigating the mechanism of 	2.4	21
	3.1	21
	4.2	21
16 Modelling concrete slabs subjected to fires using nonlinear layered shell elements and concrete damage-plasticity material. Engineering Structures, 2021, 234, 111977.	5.3	21
Gene signatures from scRNAâ€seq accurately quantify mast cells in biopsies in asthma. Clinical and Experimental Allergy, 2020, 50, 1428-1431.	2.9	16
18 Quantitative evaluation of progressive collapse process of steel portal frames in fire. Journal of Constructional Steel Research, 2018, 150, 277-287.	3.9	15

Jian Jiang

#	Article	IF	CITATIONS
19	Improved calculation method for insulation-based fire resistance of composite slabs. Fire Safety Journal, 2019, 105, 144-153.	3.1	15
20	Biodegradation-induced surface change of polymer microspheres and its influence on cell growth. Polymer Degradation and Stability, 2010, 95, 1356-1364.	5.8	14
21	Mechanical behavior of cross-shaped steel reinforced concrete columns after exposure to high temperatures. Fire Safety Journal, 2019, 108, 102857.	3.1	13
22	Fire safety assessment of super tall buildings: A case study on Shanghai Tower. Case Studies in Fire Safety, 2015, 4, 28-38.	1.0	12
23	Vibration control of cables with damped flexible end restraint: Theoretical model and experimental verification. Journal of Sound and Vibration, 2013, 332, 3626-3645.	3.9	11
24	An improved consecutive modal pushover procedure for estimating seismic demands of multi-storey framed buildings. Structural Design of Tall and Special Buildings, 2017, 26, e1336.	1.9	9
25	Seismic behavior of coupled shear wall structures with various concrete and steel coupling beams. Structural Design of Tall and Special Buildings, 2018, 27, e1405.	1.9	9
26	Influence of fire scenarios on progressive collapse mechanisms of steel framed structures. Steel Construction, 2014, 7, 169-172.	0.8	8
27	Reduced-Order Modeling of Composite Floor Slabs in Fire. I: Heat-Transfer Analysis. Journal of Structural Engineering, 2020, 146, .	3.4	8
28	Reduced-Order Modeling of Composite Floor Slabs in Fire. II: Thermal-Structural Analysis. Journal of Structural Engineering, 2020, 146, .	3.4	7
29	Investigation on Postfire Residual Capacity of High-Strength Steel Columns with Axial Restraint. Journal of Structural Engineering, 2020, 146, .	3.4	6
30	Experimental study on the dynamic behaviour of expanded-shale lightweight concrete at high strain rate. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	6
31	Analysis of Composite Steel-concrete Beams Exposed to Fire using OpenSees. Journal of Structural Fire Engineering, 2015, 6, 1-20.	0.8	5
32	Modeling structural behavior of reinforced concrete beam–slab substructures subject to side-column loss at large deflections. Advances in Structural Engineering, 2018, 21, 1051-1071.	2.4	5
33	Improved tensile membrane action model of composite slabs at elevated temperatures. Structures, 2022, 36, 13-31.	3.6	5
34	Progressive Collapse Resistance of Braced Steel Frames Exposed to Fire. , 2014, , .		4
35	Mitigating Inter-Story Drift Concentration of Concentrically Braced Steel Frames Using Energy-Dissipative Columns. Journal of Earthquake Engineering, 2022, 26, 221-239.	2.5	4
36	Modeling of Behavior of Continuous Energy-Dissipative Steel Columns Under Cyclic Loads. Journal of Earthquake Engineering, 2019, 23, 1560-1583.	2.5	4

Jian Jiang

#	Article	IF	CITATIONS
37	An insight into eurocode 4 design rules for thermal behaviour of composite slabs. Fire Safety Journal, 2021, 120, 103084.	3.1	4
38	Experimental study on reinforced concrete frames with two-side connected buckling-restrained steel plate shear walls. Advances in Structural Engineering, 2018, 21, 460-473.	2.4	3
39	Cyclic behaviour of bearing-type bolted connections with slot bolt holes. Advances in Structural Engineering, 2019, 22, 792-801.	2.4	3
40	Residual Strength of L-shaped Steel Reinforced Concrete Columns after Exposure to High Temperatures. KSCE Journal of Civil Engineering, 2021, 25, 1369-1384.	1.9	3
41	Theoretical investigations on loadâ€bearing capacity of RC flatâ€plate framed structures subject to middle column loss. Structural Design of Tall and Special Buildings, 2018, 27, e1458.	1.9	2
42	Collapse resistance of RC beam–slab subassemblies due to column loss at large deflections. Magazine of Concrete Research, 2019, 71, 647-663.	2.0	2
43	A state-of-the-art review on tensile membrane action in reinforced concrete floors exposed to fire. Journal of Building Engineering, 2022, 45, 103502.	3.4	1
44	Elevated temperature and hole-type effects on sliding behaviour of bolted connections. Advances in Structural Engineering, 2017, 20, 1962-1970.	2.4	0