Rahim Rahimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/144750/publications.pdf Version: 2024-02-01

Ранім Ранімі

#	Article	IF	CITATIONS
1	Highly Stretchable and Sensitive Unidirectional Strain Sensor via Laser Carbonization. ACS Applied Materials & Interfaces, 2015, 7, 4463-4470.	4.0	332
2	Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small, 2018, 14, e1703509.	5.2	257
3	Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbonâ^'Polyaniline Composite. ACS Applied Materials & Interfaces, 2017, 9, 9015-9023.	4.0	146
4	A low-cost flexible pH sensor array for wound assessment. Sensors and Actuators B: Chemical, 2016, 229, 609-617.	4.0	138
5	Biodegradable Nanofibrous Polymeric Substrates for Generating Elastic and Flexible Electronics. Advanced Materials, 2014, 26, 5823-5830.	11.1	117
6	Integrated sensing and delivery of oxygen for next-generation smart wound dressings. Microsystems and Nanoengineering, 2020, 6, 46.	3.4	96
7	Direct Laser Writing of Porous-Carbon/Silver Nanocomposite for Flexible Electronics. ACS Applied Materials & Interfaces, 2016, 8, 16907-16913.	4.0	87
8	Flexible Sensors for Chronic Wound Management. IEEE Reviews in Biomedical Engineering, 2014, 7, 73-86.	13.1	76
9	Laser-enabled fabrication of flexible and transparent pH sensor with near-field communication for in-situ monitoring of wound infection. Sensors and Actuators B: Chemical, 2018, 267, 198-207.	4.0	60
10	Hierarchical Micro/Mesoporous Copper Structure with Enhanced Antimicrobial Property via Laser Surface Texturing. Advanced Materials Interfaces, 2020, 7, 1901890.	1.9	51
11	A pH-regulated drug delivery dermal patch for targeting infected regions in chronic wounds. Lab on A Chip, 2019, 19, 2265-2274.	3.1	47
12	Laser-Induced Mesoporous Nickel Oxide as a Highly Sensitive Nonenzymatic Glucose Sensor. ACS Applied Nano Materials, 2020, 3, 5260-5270.	2.4	46
13	Smart capsule for non-invasive sampling and studying of the gastrointestinal microbiome. RSC Advances, 2020, 10, 16313-16322.	1.7	45
14	Flexible Microneedle Array Patch for Chronic Wound Oxygenation and Biofilm Eradication. ACS Applied Bio Materials, 2021, 4, 5405-5415.	2.3	41
15	A Self-Powered, Real-Time, LoRaWAN IoT-Based Soil Health Monitoring System. IEEE Internet of Things Journal, 2021, 8, 9278-9293.	5.5	36
16	Rapid prototyping of a novel and flexible paper based oxygen sensing patch <i>via</i> additive inkjet printing process. RSC Advances, 2019, 9, 22695-22704.	1.7	30
17	A mass-customizable dermal patch with discrete colorimetric indicators for personalized sweat rate quantification. Microsystems and Nanoengineering, 2019, 5, 29.	3.4	30
18	A Wireless Implantable Strain Sensing Scheme Using Ultrasound Imaging of Highly Stretchable Zinc Oxide/Poly Dimethylacrylamide Nanocomposite Hydrogel. ACS Applied Bio Materials, 2020, 3, 4012-4024.	2.3	29

КАНІМ КАНІМІ

#	Article	IF	CITATIONS
19	Development of a nickel oxide/oxyhydroxide-modified printed carbon electrode as an all solid-state sensor for potentiometric phosphate detection. New Journal of Chemistry, 2019, 43, 18619-18628.	1.4	28
20	Highly Conductive Copper–Silver Bimodal Paste for Low-Cost Printed Electronics. ACS Applied Electronic Materials, 2021, 3, 3352-3364.	2.0	27
21	Laserâ€Enabled Processing of Stretchable Electronics on a Hydrolytically Degradable Hydrogel. Advanced Healthcare Materials, 2018, 7, e1800231.	3.9	26
22	A paper-based in vitro model for on-chip investigation of the human respiratory system. Lab on A Chip, 2016, 16, 4319-4325.	3.1	24
23	Printed Low-Cost PEDOT:PSS/PVA Polymer Composite for Radiation Sterilization Monitoring. ACS Sensors, 2022, 7, 960-971.	4.0	24
24	Comparison of Direct and Indirect Laser Ablation of Metallized Paper for Inexpensive Paper-Based Sensors. ACS Applied Materials & Interfaces, 2018, 10, 36332-36341.	4.0	23
25	Wireless Humidity Sensor for Smart Packaging via Oneâ€step Laserâ€Induced Patterning and Nanoparticle Formation on Metallized Paper. Advanced Electronic Materials, 2022, 8, .	2.6	23
26	A biodegradable chipless sensor for wireless subsoil health monitoring. Scientific Reports, 2022, 12, 8011.	1.6	22
27	A sewing-enabled stitch-and-transfer method for robust, ultra-stretchable, conductive interconnects. Journal of Micromechanics and Microengineering, 2014, 24, 095018.	1.5	21
28	Rollâ€ŧoâ€Roll (R2R) Production of Ultrasensitive, Flexible, and Transparent Pressure Sensors Based on Vertically Aligned Lead Zirconate Titanate and Graphene Nanoplatelets. Advanced Materials Technologies, 2019, 4, 1800425.	3.0	21
29	Battery-Less Wireless Chipless Sensor Tag for Subsoil Moisture Monitoring. IEEE Sensors Journal, 2021, 21, 6071-6082.	2.4	20
30	Electrochemical sensor for rapid detection of fentanyl using laser-induced porous carbon-electrodes. Mikrochimica Acta, 2022, 189, 198.	2.5	18
31	Flexible and transparent pH monitoring system with NFC communication for wound monitoring applications. , 2017, , .		17
32	Gradient-on-a-Chip with Reactive Oxygen Species Reveals Thresholds in the Nucleus Response of Cancer Cells Depending on the Matrix Environment. ACS Biomaterials Science and Engineering, 2018, 4, 432-445.	2.6	17
33	A Janus-paper PDMS platform for air–liquid interface cell culture applications. Journal of Micromechanics and Microengineering, 2015, 25, 055015.	1.5	16
34	Laser-induced atmospheric Cu _{<i>x</i>} O formation on copper surface with enhanced electrochemical performance for non-enzymatic glucose sensing. Journal of Materials Chemistry C, 2021, 9, 14997-15010.	2.7	16
35	Small intestinal sampling capsule for inflammatory bowel disease type detection and management. Lab on A Chip, 2021, 22, 57-70.	3.1	16
36	Low-Cost Flexible Glass-Based pH Sensor via Cold Atmospheric Plasma Deposition. ACS Applied Materials & Interfaces, 2022, 14, 9697-9710.	4.0	16

КАНІМ КАНІМІ

#	Article	IF	CITATIONS
37	A Biodegradable Hybrid Micro/Nano Conductive Zinc Paste for Paperâ€Based Flexible Bioelectronics. Advanced Materials Technologies, 2022, 7, .	3.0	16
38	A lab-on-chip ultrasonic platform for real-time and nondestructive assessment of extracellular matrix stiffness. Lab on A Chip, 2020, 20, 778-788.	3.1	14
39	Laser Functionalization of Carbon Membranes for Effective Immobilization of Antimicrobial Silver Nanoparticles. Journal of Environmental Chemical Engineering, 2020, 8, 104109.	3.3	14
40	Directly embroidered microtubes for fluid transport in wearable applications. Lab on A Chip, 2017, 17, 1585-1593.	3.1	13
41	Rollâ€ŧoâ€Roll Production of Novel Largeâ€Area Piezoelectric Films for Transparent, Flexible, and Wearable Fabric Loudspeakers. Advanced Materials Technologies, 2020, 5, 2000296.	3.0	13
42	A Wireless Implantable Passive Intra-Abdominal Pressure Sensing Scheme via Ultrasonic Imaging of a Microfluidic Device. IEEE Transactions on Biomedical Engineering, 2021, 68, 747-758.	2.5	13
43	Laser-Assisted Nanotexturing and Silver Immobilization on Titanium Implant Surfaces to Enhance Bone Cell Mineralization and Antimicrobial Properties. Langmuir, 2022, 38, 4014-4027.	1.6	13
44	Wearable and Flexible Ozone Generating System for Treatment of Infected Dermal Wounds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 458.	2.0	12
45	Wireless Sensor Network Utilizing Flexible Nitrate Sensors for Smart Farming. , 2019, , .		11
46	Steady-State and Transient Performance of Ion-Sensitive Electrodes Suitable for Wearable and Implantable Electro-Chemical Sensing. IEEE Transactions on Biomedical Engineering, 2022, 69, 96-107.	2.5	11
47	Inkjet-printed Solid-state Potentiometric Nitrate Ion Selective Electrodes for Agricultural Application. , 2019, , .		11
48	Cell Culture and Coculture for Oncological Research in Appropriate Microenvironments. Current Protocols in Chemical Biology, 2019, 11, e65.	1.7	10
49	A wireless chipless printed sensor tag for real-time radiation sterilization monitoring. Journal of Materials Chemistry C, 2022, 10, 9813-9822.	2.7	10
50	Improved performance of printed electrochemical sensors <i>via</i> cold atmospheric plasma surface modification. Journal of Materials Chemistry C, 2022, 10, 10562-10573.	2.7	10
51	Noninvasive assessment of microbial activity by realtime monitoring degradation of cellulose acetate via electrochemical impedance measurement. Sensors and Actuators A: Physical, 2021, 321, 112543.	2.0	8
52	Fabrication and characterization of implantable flushable electrodes for electric fieldâ€mediated drug delivery in a brain tissueâ€mimic agarose gel. Electrophoresis, 2018, 39, 2262-2269.	1.3	7
53	Flexible supercapacitor based on MnO2coated laser carbonized electrodes. Journal of Physics: Conference Series, 2015, 660, 012044.	0.3	5
54	Skin Regeneration Using Dermal Substrates that Contain Autologous Cells and Silver Nanoparticles to Promote Antibacterial Activity: In Vitro Studies. Military Medicine, 2017, 182, 376-382.	0.4	5

Канім Канімі

#	Article	IF	CITATIONS
55	Laser-treated glass platform for rapid wicking-driven transport and particle separation in bio microfluidics. RSC Advances, 2019, 9, 19531-19538.	1.7	5
56	Laser-Enabled Fabrication Technologies for Low-Cost Flexible/Conformal Cutaneous Wound Interfaces. Microsystems and Nanosystems, 2016, , 207-226.	0.1	4
57	Smart Bandages: Smart Bandage for Monitoring and Treatment of Chronic Wounds (Small 33/2018). Small, 2018, 14, 1870150.	5.2	4
58	Yeast Metabolic Response as an Indicator of Radiation Damage in Biological Tissue. Advanced Biology, 2018, 2, 1800126.	3.0	4
59	Real-Time Tracking of a 3D-Printed Smart Capsule Using on-Board Near-Infrared Led Array. , 2019, , .		3
60	Correlated Effects of Radiation and Hot Carrier Degradation on the Performance of LDMOS Transistors. , 2022, , .		2
61	A facile fabrication technique for stretchable interconnects and transducers via laser carbonization. , 2015, , .		1