J Andrés Melendez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1447248/publications.pdf

Version: 2024-02-01

56 papers

6,578 citations

33 h-index 55 g-index

58 all docs 58 docs citations

58 times ranked 10507 citing authors

#	Article	IF	CITATIONS
1	Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1α during Hypoxia. Journal of Biological Chemistry, 2000, 275, 25130-25138.	1.6	1,697
2	Mitochondrial Complex I Inhibitor Rotenone Induces Apoptosis through Enhancing Mitochondrial Reactive Oxygen Species Production. Journal of Biological Chemistry, 2003, 278, 8516-8525.	1.6	1,112
3	Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology and Medicine, 2004, 37, 768-784.	1.3	388
4	Overexpression of Catalase in Cytosolic or Mitochondrial Compartment Protects HepG2 Cells against Oxidative Injury. Journal of Biological Chemistry, 1999, 274, 26217-26224.	1.6	257
5	Redox control of senescence and age-related disease. Redox Biology, 2017, 11, 91-102.	3.9	240
6	Mitochondrial ROS control of cancer. Seminars in Cancer Biology, 2017, 47, 57-66.	4.3	222
7	Mitochondrial H2O2 Regulates the Angiogenic Phenotype via PTEN Oxidation. Journal of Biological Chemistry, 2005, 280, 16916-16924.	1.6	217
8	Manganese Superoxide Dismutase Enhances the Invasive and Migratory Activity of Tumor Cells. Cancer Research, 2007, 67, 10260-10267.	0.4	157
9	Manganese Superoxide Dismutase Signals Matrix Metalloproteinase Expression via H2O2-dependent ERK1/2 Activation. Journal of Biological Chemistry, 2001, 276, 14264-14270.	1.6	139
10	Manganese Superoxide Dismutase (Sod2) and Redox-Control of Signaling Events That Drive Metastasis. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 191-201.	0.9	135
11	Mitochondrial or cytosolic catalase reverses the MnSOD-dependent inhibition of proliferation by enhancing respiratory chain activity, net ATP production, and decreasing the steady state levels of H2O2. Free Radical Biology and Medicine, 2000, 29, 801-813.	1.3	126
12	Elevated sod2 activity augments matrix metalloproteinase expression: evidence for the involvement of endogenous hydrogen peroxide in regulating metastasis. Clinical Cancer Research, 2003, 9, 424-32.	3.2	112
13	Matrix Metalloproteinase 9 Activity Enhances Host Susceptibility to Pulmonary Infection with Type A and B Strains of <i>Francisella tularensis</i>	0.4	104
14	Superoxide Dismutase B Gene (sodB)-Deficient Mutants of Francisella tularensis Demonstrate Hypersensitivity to Oxidative Stress and Attenuated Virulence. Journal of Bacteriology, 2006, 188, 6443-6448.	1.0	99
15	Altered redox status accompanies progression to metastatic human bladder cancer. Free Radical Biology and Medicine, 2009, 46, 42-50.	1.3	92
16	DPI induces mitochondrial superoxide-mediated apoptosis. Free Radical Biology and Medicine, 2003, 34, 465-477.	1.3	90
17	Strain-stimulated hypertrophy in cardiac myocytes is mediated by reactive oxygen species-dependent Ras S-glutathiolation. Journal of Molecular and Cellular Cardiology, 2006, 41, 613-622.	0.9	89
18	Redox-control of matrix metalloproteinase-1: A critical link between free radicals, matrix remodeling and degenerative disease. Respiratory Physiology and Neurobiology, 2010, 174, 299-306.	0.7	87

#	Article	IF	CITATIONS
19	Alkbh8 Regulates Selenocysteine-Protein Expression to Protect against Reactive Oxygen Species Damage. PLoS ONE, 2015, 10, e0131335.	1.1	77
20	Potential Mechanisms for the Inhibition of Tumor Cell Growth by Manganese Superoxide Dismutase. Antioxidants and Redox Signaling, 2001, 3, 361-373.	2.5	72
21	An improved vaccine for prevention of respiratory tularemia caused by Francisella tularensis SchuS4 strain. Vaccine, 2008, 26, 5276-5288.	1.7	70
22	Haem oxygenase 1 gene induction by glucose deprivation is mediated by reactive oxygen species via the mitochondrial electron-transport chain. Biochemical Journal, 2003, 371, 877-885.	1.7	68
23	Manganese Superoxide Dismutase Protects from TNF-α–Induced Apoptosis by Increasing the Steady-State Production of H2O2. Antioxidants and Redox Signaling, 2006, 8, 1295-1305.	2.5	67
24	Redox-dependent Matrix Metalloproteinase-1 Expression Is Regulated by JNK through Ets and AP-1 Promoter Motifs*. Journal of Biological Chemistry, 2006, 281, 14100-14110.	1.6	66
25	Reactive oxygen species control senescenceâ€associated matrix metalloproteinaseâ€1 through câ€Junâ€Nâ€terminal kinase. Journal of Cellular Physiology, 2010, 225, 52-62.	2.0	66
26	Redox Control of the Senescence Regulator Interleukin- $1\hat{l}_{\pm}$ and the Secretory Phenotype. Journal of Biological Chemistry, 2013, 288, 32149-32159.	1.6	65
27	Francisella tularensis Antioxidants Harness Reactive Oxygen Species to Restrict Macrophage Signaling and Cytokine Production. Journal of Biological Chemistry, 2010, 285, 27553-27560.	1.6	58
28	Identification of Francisella tularensis Live Vaccine Strain CuZn Superoxide Dismutase as Critical for Resistance to Extracellularly Generated Reactive Oxygen Species. Journal of Bacteriology, 2009, 191, 6447-6456.	1.0	55
29	Nickel Compounds Render Anti-apoptotic Effect to Human Bronchial Epithelial Beas-2B Cells by Induction of Cyclooxygenase-2 through an IKKβ/p65-dependent and IKKα- and p50-independent Pathway. Journal of Biological Chemistry, 2006, 281, 39022-39032.	1.6	48
30	Mitochondrial localization of catalase provides optimal protection from H2O2-induced cell death in lung epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L978-L986.	1.3	40
31	Serotonin-induced MMP-13 Production Is Mediated via Phospholipase C, Protein Kinase C, and ERK1/2 in Rat Uterine Smooth Muscle Cells. Journal of Biological Chemistry, 2002, 277, 42830-42840.	1.6	39
32	Potent Anti-tumor Effects of an Active Site Mutant of Human Manganese-Superoxide Dismutase. Journal of Biological Chemistry, 2004, 279, 12769-12776.	1.6	36
33	FcÎ ³ R-driven Release of IL-6 by Macrophages Requires NOX2-dependent Production of Reactive Oxygen Species. Journal of Biological Chemistry, 2013, 288, 25098-25108.	1.6	36
34	A Dynamic Culture Method to Produce Ovarian Cancer Spheroids under Physiologically-Relevant Shear Stress. Cells, 2018, 7, 277.	1.8	36
35	Micropatterning of 3D Microenvironments for Living Biosensor Applications. Biosensors, 2014, 4, 28-44.	2.3	34
36	Redox-control of the alarmin, Interleukin-1α. Redox Biology, 2013, 1, 218-225.	3.9	28

#	Article	IF	CITATIONS
37	Acquisition of the Metastatic Phenotype Is Accompanied by H2O2-Dependent Activation of the p130Cas Signaling Complex. Molecular Cancer Research, 2013, 11, 303-312.	1.5	26
38	Loss of epitranscriptomic control of selenocysteine utilization engages senescence and mitochondrial reprogramming. Redox Biology, 2020, 28, 101375.	3.9	25
39	Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules. Redox Biology, 2014, 2, 245-250.	3.9	23
40	Manganese superoxide dismutase inactivation during Fas (CD95)-mediated apoptosis in Jurkat T cells. Free Radical Biology and Medicine, 2006, 41, 1795-1806.	1.3	22
41	Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radical Biology and Medicine, 2019, 143, 573-593.	1.3	19
42	Serotonin-mediated Production of Interstitial Collagenase by Uterine Smooth Muscle Cells Requires Interleukin- $1\hat{1}_{\pm}$, but not Interleukin- $1\hat{1}^{2}$. Journal of Biological Chemistry, 1998, 273, 25488-25494.	1.6	18
43	Redox-sensitive gene-regulatory events controlling aberrant matrix metalloproteinase-1 expression. Free Radical Biology and Medicine, 2014, 74, 99-107.	1.3	18
44	Characterization of <i>adapt33</i> , a Stress-Inducible Riboregulator. Gene Expression, 2003, 11, 85-94.	0.5	15
45	Comparative analysis of redox and inflammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nano-abrasives. Toxicology Letters, 2015, 239, 205-215.	0.4	14
46	Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity. Journal of Biological Chemistry, 2016, 291, 3871-3881.	1.6	14
47	Senescence in chronic allograft nephropathy. American Journal of Physiology - Renal Physiology, 2018, 315, F880-F889.	1.3	12
48	The epitranscriptomic writer ALKBH8 drives tolerance and protects mouse lungs from the environmental pollutant naphthalene. Epigenetics, 2020, 15, 1121-1138.	1.3	12
49	Localization and regulation of IL- $\hat{\mathbf{l}}$ ± in rat myometrium during late pregnancy and the postpartum period. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R879-R888.	0.9	10
50	Age-dependent increases in interstitial collagenase and MAP Kinase levels are exacerbated by superoxide dismutase deficiencies. Experimental Gerontology, 2009, 44, 503-510.	1,2	8
51	Cloning of the cDNA and nucleotide sequence of a skeletal muscle protease from myopathic hamsters. Molecular and Cellular Biochemistry, 1998, 181, 125-135.	1.4	5
52	Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype. Experimental Biology and Medicine, 2020, 245, 1560-1570.	1.1	5
53	Boronate probe-based hydrogen peroxide detection with AlGaN/GaN HEMT sensor. Experimental Biology and Medicine, 2021, 246, 523-528.	1.1	4
54	Featured Article: Nanoenhanced matrix metalloproteinase-responsive delivery vehicles for disease resolution and imaging. Experimental Biology and Medicine, 2016, 241, 2023-2032.	1.1	3

#	Article	IF	CITATIONS
55	Regulation of the Cellular Redox Environment by Superoxide Dismutases, Catalase, and Glutathione Peroxidases During Tumor Metastasis. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 51-79.	0.4	1
56	Respiratory Control of Redox Signaling and Cancer. , 2009, , 33-44.		0