Janet L Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1447232/publications.pdf Version: 2024-02-01

INNET L SCOTT

#	Article	IF	CITATIONS
1	Continuous rotary membrane emulsification for the production of sustainable Pickering emulsions. Chemical Engineering Science, 2022, 249, 117328.	1.9	6
2	Stable Cellulose Nanofibril Microcapsules from Pickering Emulsion Templates. Langmuir, 2022, 38, 3370-3379.	1.6	4
3	Production of sub-10 micrometre cellulose microbeads using isoporous membranes. , 2022, 2, 100024.		4
4	Preparation of Printable and Biodegradable Cellulose-Laponite Composite for Electronic Device Application. Journal of Polymers and the Environment, 2021, 29, 17-27.	2.4	7
5	Microstructural, Thermal, Crystallization, and Water Absorption Properties of Films Prepared from Neverâ€Dried and Freezeâ€Dried Cellulose Nanocrystals. Macromolecular Materials and Engineering, 2021, 306, 2000462.	1.7	3
6	Composite Hydrogel Spheroids Based on Cellulose Nanofibrils and Nanofibrous Chiral Coordination Polymer by Green Synthesis. Advanced Sustainable Systems, 2021, 5, 2000069.	2.7	2
7	Enzyme-Functionalized Cellulose Beads as a Promising Antimicrobial Material. Biomacromolecules, 2021, 22, 754-762.	2.6	17
8	Monovalent Salt and pH-Induced Gelation of Oxidised Cellulose Nanofibrils and Starch Networks: Combining Rheology and Small-Angle X-ray Scattering. Polymers, 2021, 13, 951.	2.0	3
9	Salt-Responsive Pickering Emulsions Stabilized by Functionalized Cellulose Nanofibrils. Langmuir, 2021, 37, 6864-6873.	1.6	15
10	Influence of Calcium Silicate and Hydrophobic Agent Coatings on Thermal, Water Barrier, Mechanical and Biodegradation Properties of Cellulose. Nanomaterials, 2021, 11, 1488.	1.9	2
11	Rheological modification of partially oxidised cellulose nanofibril gels with inorganic clays. PLoS ONE, 2021, 16, e0252660.	1.1	2
12	Non-volatile conductive gels made from deep eutectic solvents and oxidised cellulose nanofibrils. Nanoscale Advances, 2021, 3, 2252-2260.	2.2	18
13	Keratin–Chitosan Microcapsules via Membrane Emulsification and Interfacial Complexation. ACS Sustainable Chemistry and Engineering, 2021, 9, 16617-16626.	3.2	8
14	Charge-driven interfacial gelation of cellulose nanofibrils across the water/oil interface. Soft Matter, 2020, 16, 357-365.	1.2	12
15	Cationic surfactants as a non-covalent linker for oxidised cellulose nanofibrils and starch-based hydrogels. Carbohydrate Polymers, 2020, 233, 115816.	5.1	18
16	Multienzyme Cellulose Films as Sustainable and Self-Degradable Hydrogen Peroxide-Producing Material. Biomacromolecules, 2020, 21, 5315-5322.	2.6	4
17	Deep eutectic solvent in water pickering emulsions stabilised by cellulose nanofibrils. RSC Advances, 2020, 10, 37023-37027.	1.7	8
18	Advances in the green chemistry of coordination polymer materials. Green Chemistry, 2020, 22, 3693-3715.	4.6	67

#	Article	IF	CITATIONS
19	Filler size effect in an attractive fibrillated network: a structural and rheological perspective. Soft Matter, 2020, 16, 3303-3310.	1.2	12
20	Core–Shell Spheroidal Hydrogels Produced via Charge-Driven Interfacial Complexation. ACS Applied Polymer Materials, 2020, 2, 1213-1221.	2.0	2
21	Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels. Biomacromolecules, 2020, 21, 1812-1823.	2.6	38
22	Impact of wormlike micelles on nano and macroscopic structure of TEMPO-oxidized cellulose nanofibril hydrogels. Soft Matter, 2020, 16, 4887-4896.	1.2	7
23	Designing and Synthesizing Materials with Appropriate Lifetimes. , 2019, , 483-511.		0
24	Ultra-high pressure direct syntheses of bis(imidazolium-3-yl)alkane dichlorides. Tetrahedron, 2019, 75, 130639.	1.0	7
25	Mechanically robust cationic cellulose nanofibril 3D scaffolds with tuneable biomimetic porosity for cell culture. Journal of Materials Chemistry B, 2019, 7, 53-64.	2.9	22
26	Carbohydrate binding modules enhance cellulose enzymatic hydrolysis by increasing access of cellulases to the substrate. Carbohydrate Polymers, 2019, 211, 57-68.	5.1	75
27	Polymers from plants: Biomass fixed carbon dioxide as a resource. , 2019, , 503-525.		7
28	Understanding heat driven gelation of anionic cellulose nanofibrils: Combining saturation transfer difference (STD) NMR, small angle X-ray scattering (SAXS) and rheology. Journal of Colloid and Interface Science, 2019, 535, 205-213.	5.0	32
29	Closing the Loop on Eâ€waste: A Multidisciplinary Perspective. Journal of Industrial Ecology, 2019, 23, 169-181.	2.8	39
30	Impedimetric paper-based biosensor for the detection of bacterial contamination in water. Sensors and Actuators B: Chemical, 2018, 265, 50-58.	4.0	97
31	Modulating cell response on cellulose surfaces; tunable attachment and scaffold mechanics. Cellulose, 2018, 25, 925-940.	2.4	48
32	Predicting Ligand-Free Cell Attachment on Next-Generation Cellulose–Chitosan Hydrogels. ACS Omega, 2018, 3, 937-945.	1.6	17
33	The 6 th International IUPAC Conference on Green Chemistry 4–8 September 2016 – Venezia (Italy). Pure and Applied Chemistry, 2018, 90, 235-237.	0.9	0
34	Unravelling cationic cellulose nanofibril hydrogel structure: NMR spectroscopy and small angle neutron scattering analyses. Soft Matter, 2018, 14, 255-263.	1.2	27
35	A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water. Biosensors and Bioelectronics, 2018, 102, 49-56.	5.3	139
36	Alcohol induced gelation of TEMPO-oxidized cellulose nanofibril dispersions. Soft Matter, 2018, 14, 9243-9249.	1.2	19

#	Article	IF	CITATIONS
37	TEMPO-oxidised cellulose nanofibrils; probing the mechanisms of gelation <i>via</i> small angle X-ray scattering. Physical Chemistry Chemical Physics, 2018, 20, 16012-16020.	1.3	41
38	Surfactant controlled zwitterionic cellulose nanofibril dispersions. Soft Matter, 2018, 14, 7793-7800.	1.2	16
39	Recent Advances in Modified Cellulose for Tissue Culture Applications. Molecules, 2018, 23, 654.	1.7	97
40	Pickering emulsions stabilized by naturally derived or biodegradable particles. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 83-90.	3.2	121
41	Designing and Synthesizing Materials with Appropriate Lifetimes. , 2018, , 1-29.		0
42	lonic Diodes Based on Regenerated α ellulose Films Deposited Asymmetrically onto a Microhole. ChemistrySelect, 2017, 2, 871-875.	0.7	7
43	On the subtle tuneability of cellulose hydrogels: implications for binding of biomolecules demonstrated for CBM 1. Journal of Materials Chemistry B, 2017, 5, 3879-3887.	2.9	28
44	Combining random walk and regression models to understand solvation in multi-component solvent systems. Physical Chemistry Chemical Physics, 2017, 19, 17805-17815.	1.3	2
45	Continuous Production of Cellulose Microbeads via Membrane Emulsification. ACS Sustainable Chemistry and Engineering, 2017, 5, 5931-5939.	3.2	57
46	Cellulose ionics: switching ionic diode responses by surface charge in reconstituted cellulose films. Analyst, The, 2017, 142, 3707-3714.	1.7	15
47	Surface modified cellulose scaffolds for tissue engineering. Cellulose, 2017, 24, 253-267.	2.4	136
48	Biphasic Epoxidation Reaction in the Absence of Surfactants—Integration of Reaction and Separation Steps in Microtubular Reactors. ACS Sustainable Chemistry and Engineering, 2016, 4, 3245-3249.	3.2	8
49	Directed Discovery of Greener Cosolvents: New Cosolvents for Use in Ionic Liquid Based Organic Electrolyte Solutions for Cellulose Dissolution. ACS Sustainable Chemistry and Engineering, 2016, 4, 6200-6207.	3.2	36
50	Ibuprofen delivery into and through the skin from novel oxidized cellulose-based gels and conventional topical formulations. International Journal of Pharmaceutics, 2016, 514, 238-243.	2.6	29
51	Appropriate lifetimes, fitting deaths. Green Chemistry, 2016, 18, 6157-6159.	4.6	6
52	Voltammetric optimisation of TEMPO-mediated oxidations at cellulose fabric. Green Chemistry, 2014, 16, 3322-3327.	4.6	29
53	Insights into biphasic oxidations with hydrogen peroxide; towards scaling up. Green Chemistry, 2014, 16, 3281-3285.	4.6	17
54	Partially Oxidised Cellulose Nanofibril Gels for Rheology Modification. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1320-C1320.	0.0	1

#	Article	IF	CITATIONS
55	Formation of shear thinning gels from partially oxidised cellulose nanofibrils. Green Chemistry, 2012, 14, 300-303.	4.6	53
56	Horning-crown diamine complexes and salts: proton transfer mediated by solid-state intermolecular hydrogen bonding. CrystEngComm, 2011, 13, 167-176.	1.3	2
57	A "by-productless―cellulose foaming agent for use in imidazolium ionic liquids. Chemical Communications, 2011, 47, 2970.	2.2	7
58	Catalytic activity of choline modified Fe(III) montmorillonite. Applied Clay Science, 2011, 53, 336-340.	2.6	11
59	Distortional Isomerism in Copper(II) Nitrato Complexes of N,N′,N″-Tris{[(para-nitrobenzyl)phenyl]aminoethyl}amine. European Journal of Inorganic Chemistry, 2010, 2010, 5394-5400.	1.0	3
60	Synthesis and biological activity of Δ-5,6-norcantharimides: importance of the 5,6-bridge. European Journal of Medicinal Chemistry, 2010, 45, 1717-1723.	2.6	34
61	Molecular and Supramolecular Diversity Displayed by Dienone-Ether Macrocycles. Crystal Growth and Design, 2010, 10, 2409-2420.	1.4	4
62	Partial Exchange of Fe(III) Montmorillonite with Hexadecyltrimethylammonium Cation Increases Catalytic Activity for Hydrophobic Substrates. Langmuir, 2010, 26, 4258-4265.	1.6	14
63	Closing the cavity: reactive and light switchable dienone-ether macrocycles. CrystEngComm, 2010, 12, 2803.	1.3	2
64	Toward preparative resolution of chiral alcohols by an organic chemical method. New Journal of Chemistry, 2010, 34, 398.	1.4	3
65	One-pot synthesis of tripodal tris(2-aminoethyl)amine derivatives from seven molecular components. Tetrahedron Letters, 2009, 50, 1847-1850.	0.7	12
66	Fullerene Inclusion Based on Horning-Crown Macrocycles. Crystal Growth and Design, 2009, 9, 483-487.	1.4	5
67	Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chemistry, 2009, 11, 339.	4.6	390
68	Exploring an Anti-Crystal Engineering Approach to the Preparation of Pharmaceutically Active Ionic Liquids. Crystal Growth and Design, 2009, 9, 1137-1145.	1.4	120
69	Stabilisation of a very short Cu–F bond within the protected cavity of a copper(ii) compound from a tris(2-aminoethyl)amine derivative. Dalton Transactions, 2009, , 4077.	1.6	11
70	Chapter 6. Simple Reactions for the Synthesis of Complex Molecules. RSC Green Chemistry, 2009, , 220-236.	0.0	2
71	A mild Boc deprotection and the importance of a free carboxylate. Tetrahedron Letters, 2008, 49, 6962-6964.	0.7	25
72	Platform technology for dienone and phenol–formaldehyde architectures. Green Chemistry, 2008, 10, 842.	4.6	10

#	Article	IF	CITATIONS
73	Efficient Isomeric Enrichment in Cocrystals of Cyclohexanediamines and Low Molecular Weight Diols. Crystal Growth and Design, 2008, 8, 2447-2452.	1.4	4
74	Interactions in bisamide ionic liquids—insights from a Hirshfeld surface analysis of their crystalline states. New Journal of Chemistry, 2008, 32, 2121.	1.4	44
75	Ternary mixtures of phosphonium ionic liquids + organic solvents + water. Pure and Applied Chemistry, 2008, 80, 1325-1335.	0.9	27
76	Signalling By Modulation of Intermolecular Interactions. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 429-447.	0.2	0
77	Distillable ionic liquids for a new multicomponent reaction. Pure and Applied Chemistry, 2007, 79, 1869-1877.	0.9	30
78	Coordination chemistry of N,N,4-tris(pyridin-2-ylmethyl)aniline: a novel flexible, multimodal ligand. CrystEngComm, 2007, 9, 997.	1.3	19
79	One-step synthesis of N,N′-dialkyl-p-phenylenediamines. Green Chemistry, 2007, 9, 80-84.	4.6	5
80	Assessing and improving the catalytic activity of K-10 montmorillonite. Green Chemistry, 2007, 9, 980.	4.6	62
81	Guest Signaling Compound:Âtrans-3,3â€~-Bis(diphenylhydroxymethyl)azobenzene. Crystal Growth and Design, 2007, 7, 1049-1054.	1.4	6
82	Liquids intermediate between "molecular―and "ionic―liquids: Liquid Ion Pairs?. Chemical Communications, 2007, , 3817.	2.2	231
83	Reactivity of ionic liquids. Tetrahedron, 2007, 63, 2363-2389.	1.0	568
84	High temperature synthesis of some strontium and barium 2,6-dibenzylphenolates. Polyhedron, 2007, 26, 244-249.	1.0	13
85	Synthesis and structural characterisation of lithium and sodium 2,6-dibenzylphenolate complexes. Dalton Transactions, 2006, , 3338.	1.6	20
86	Oxidative coupling revisited: solvent-free, heterogeneous and in water. Green Chemistry, 2006, 8, 333.	4.6	39
87	Thermal degradation of cyano containing ionic liquids. Green Chemistry, 2006, 8, 691.	4.6	224
88	A critical assessment of electrochemistry in a distillable room temperature ionic liquid, DIMCARB. Green Chemistry, 2006, 8, 161-171.	4.6	59
89	Reactions of 2,6-Dibenzylidenecyclohexanone and its Derivatives in High-Temperature Water. Australian Journal of Chemistry, 2006, 59, 883.	0.5	1
90	A direct, efficient synthesis of unsymmetrically substituted bis(arylidene)alkanones. Green Chemistry, 2006, 8, 1042.	4.6	18

#	Article	IF	CITATIONS
91	Selective Inclusion of Equatorial Isomers of Cyclohexane-Polyols in Phosphonium Salt Hosts. European Journal of Organic Chemistry, 2006, 2006, 2423-2428.	1.2	9
92	Crystalline Photochromism of 2-Propynylallene Derivatives. Bulletin of the Chemical Society of Japan, 2005, 78, 294-299.	2.0	14
93	Synthesis and structural characterization of two monomeric potassium phenolates. Inorganica Chimica Acta, 2005, 358, 3159-3164.	1.2	8
94	Voltammetric studies of polyoxometalate microparticles in contact with the reactive distillable ionic liquid DIMCARB. Electrochemistry Communications, 2005, 7, 1283-1290.	2.3	18
95	Small Molecule Inhibitors of Dynamin I GTPase Activity:Â Development of Dimeric Tyrphostins. Journal of Medicinal Chemistry, 2005, 48, 7781-7788.	2.9	75
96	Preparation of 2- and 4-ArylmethylN-Substituted andN,N-Disubstituted Anilines via a "Greenâ€, Multicomponent Reaction. Organic Letters, 2005, 7, 1525-1528.	2.4	16
97	Direct Syntheses and Structural Novelty of Lanthanoid Aryloxides with Flexible Radial Arms. European Journal of Inorganic Chemistry, 2005, 2005, 4138-4144.	1.0	14
98	Horning-Crown Macrocycles: Novel Hybrids of Calixarenes and Crown Ethers ChemInform, 2005, 36, no.	0.1	0
99	Ionic Liquids: The Neglected Issues ChemInform, 2005, 36, no.	0.1	3
100	Preparation of 2- and 4-Arylmethyl N-Substituted and N,N-Disubstituted Anilines via a "Greenâ€, Multicomponent Reaction ChemInform, 2005, 36, no.	0.1	0
101	Photochromic Crystals:  Toward an Understanding of Color Development in the Solid State. Crystal Growth and Design, 2005, 5, 1209-1213.	1.4	19
102	Ionic Liquids: The Neglected Issues. Australian Journal of Chemistry, 2005, 58, 155.	0.5	268
103	Self-associated, "Distillable―Ionic Media. Molecules, 2004, 9, 387-393.	1.7	71
104	Guest-Selective Color and Fluorescence Changes of a Novel Fluorenone-Based Host Compound ChemInform, 2004, 35, no.	0.1	0
105	Novel Fluorene Based Host Compounds Designed to Probe Solid-State Fluorescence ChemInform, 2004, 35, no.	0.1	0
106	A New Family of Macrocycles Produced by Sequential Claisen—Schmidt Condensations. ChemInform, 2004, 35, no.	0.1	0
107	Conservation of self-associated dimers in solvates of a novel Horning-crown macrocycle. CrystEngComm, 2004, 6, 484.	1.3	12
108	Guest specific solid-state fluorescence rationalised by reference to solid-state structures and specific intermolecular interactions. New Journal of Chemistry, 2004, 28, 447.	1.4	61

#	Article	IF	CITATIONS
109	Solvent-mediated self-association of a Horning-crown macrocycle. Chemical Communications, 2004, , 2264.	2.2	12
110	A New Family of Macrocycles Produced by Sequential Claisenâ ² Schmidt Condensations. Organic Letters, 2004, 6, 3257-3259.	2.4	21
111	Thermal Degradation of Ionic Liquids at Elevated Temperatures. Australian Journal of Chemistry, 2004, 57, 145.	0.5	301
112	Horning-Crown Macrocycles:  Novel Hybrids of Calixarenes and Crown Ethers. Organic Letters, 2004, 6, 3261-3264.	2.4	15
113	Novel Fluorene Based Host Compounds Designed to Probe Solid-State Fluorescence. Bulletin of the Chemical Society of Japan, 2004, 77, 1697-1701.	2.0	36
114	Synthesis and Characterisation of Macrocyclic Diamino Chiral Crown Ethers. Molecules, 2004, 9, 513-519.	1.7	19
115	Novel Thermally Induced Rearrangement of a Propargylallene to a Furofuran Derivative in the Solid State. European Journal of Organic Chemistry, 2003, 2003, 2035-2038.	1.2	10
116	Direct Preparation of Monoarylidene Derivatives of Aldehydes and Enolizable Ketones with DIMCARB ChemInform, 2003, 34, no.	0.1	0
117	The effect of anion fluorination in ionic liquids—physical properties of a range of bis(methanesulfonyl)amide salts. New Journal of Chemistry, 2003, 27, 1504-1510.	1.4	156
118	Direct Preparation of Monoarylidene Derivatives of Aldehydes and Enolizable Ketones with DIMCARB. Organic Letters, 2003, 5, 3107-3110.	2.4	86
119	A thermodynamic investigation of solvent-free reactions. Green Chemistry, 2003, 5, 30-33.	4.6	28
120	Novel photochromism of propargylallene in the solid state. CrystEngComm, 2003, 5, 147-149.	1.3	12
121	Potential impacts of deep-sea injection of CO2 on marine organic chemistry. Green Chemistry, 2003, 5, 392.	4.6	3
122	Direct, efficient, solvent-free synthesis of 2-aryl-1,2,3,4-tetrahydroquinazolines. Green Chemistry, 2002, 4, 245-251.	4.6	47
123	A novel chromogenic host compound that shows sensitive color change upon inclusion crystallizationElectronic supplementary information (ESI) available: molecular structures of 1 and 1A·2DMF. See http://www.rsc.org/suppdata/nj/b1/b111359c/. New Journal of Chemistry, 2002, 26, 378-380.	1.4	14
124	Novel chromogenic, guest-sensitive host compounds. New Journal of Chemistry, 2002, 26, 1822-1826.	1.4	23
125	Chromogenic guest-responsive host compounds which allow rapid guest screening. CrystEngComm, 2002, 4, 580.	1.3	7
126	Green chemistry approaches to the Knoevenagel condensation: comparison of ethanol, water and solvent free (dry grind) approaches. Tetrahedron Letters, 2002, 43, 3117-3120.	0.7	62

#	Article	IF	CITATIONS
127	Solvent-free synthesis of calix[4]resorcinarenes. Green Chemistry, 2001, 3, 280-284.	4.6	64
128	Title is missing!. Chemical Communications, 2001, , 2159-2169.	2.2	458
129	Understanding Solid/Solid Organic Reactions. Journal of the American Chemical Society, 2001, 123, 8701-8708.	6.6	408
130	Solvent-free, two-step synthesis of some unsymmetrical 4-aryl-1,4-dihydropyridines. Green Chemistry, 2001, 3, 296-301.	4.6	45
131	Teaching green chemistry. Third-year-level module and beyond. Pure and Applied Chemistry, 2001, 73, 1257-1260.	0.9	11
132	Centre for Green Chemistry, Monash University, Australia. Pure and Applied Chemistry, 2001, 73, 1251-1255.	0.9	0
133	Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chemical Communications, 2001, , 2159-69.	2.2	22
134	Solvent-free synthesis of 3-carboxycoumarins. Green Chemistry, 2000, 2, 245-247.	4.6	55
135	Clean, efficient syntheses of cyclotriveratrylene (CTV) and tris-(O-allyl)CTV in an ionic liquid. Green Chemistry, 2000, 2, 123-126.	4.6	73
136	Chemoselective, solvent-free aldol condensation reaction. Green Chemistry, 2000, 2, 49-52.	4.6	107
137	Cholic Acid Inclusion Compounds with Aromatic Guests: Structures and Decomposition Kinetics. Supramolecular Chemistry, 1997, 8, 241-248.	1.5	1
138	Cholic Acid Inclusion Compounds with Aromatic Ketone Guests: Structure and Reaction Kinetics. Supramolecular Chemistry, 1997, 8, 231-239.	1.5	2
139	Optical resolution of baclofen via diastereomeric salt pair formation between 3-(p-chlorophenyl)glutaramic acid and (S)-(Ⱂ)-α-phenylethylamine. Journal of the Chemical Society Perkin Transactions II, 1997, , 763-768.	0.9	22
140	Resolution of optical isomers of 4-amino-p-chlorobutyric acid lactam by co-crystallization. Journal of Chemical Crystallography, 1996, 26, 117-122.	0.5	16
141	Solid-state formation of an inclusion compound of cholic acid withp-toluidine. Journal of Chemical Crystallography, 1996, 26, 185-189.	0.5	4
142	Inclusion compounds of cholic acid with mixed guests. Supramolecular Chemistry, 1996, 7, 201-207.	1.5	7
143	Cholic Acid Inclusion Compounds with Aromatic Guests - Solid-Vapour Reactions. Molecular Crystals and Liquid Crystals, 1996, 276, 113-120.	0.3	3
144	Solid–vapour reactions of cholic acid and methyl cholate with acetonitrile: structures and reaction kinetics. Journal of the Chemical Society Perkin Transactions II, 1995, , 495-502.	0.9	22

#	Article	IF	CITATIONS
145	Inclusion compounds of N,N,N′,N′-tetraisopropylfumaride with isomers of methyl phenol and water. Journal of Chemical Crystallography, 1994, 24, 495-501.	0.5	1
146	Inclusion compounds of N,N,N′,N′-tetracyclohexylfumaride with isomers of cresol and water. Journal of Chemical Crystallography, 1994, 24, 545-552.	0.5	1
147	Cholic acid inclusion compounds with ketone guests. Journal of Chemical Crystallography, 1994, 24, 783-791.	0.5	12
148	Inclusion compounds of cholic acid with aliphatic esters. Journal of the Chemical Society Perkin Transactions II, 1994, , 623.	0.9	21
149	Crystal structure and multiphase decomposition of a novel cholic acid inclusion compound with mixed guests. Journal of the Chemical Society Perkin Transactions II, 1994, , 1403.	0.9	17
150	Selective inclusion by cholic acid. Journal of the Chemical Society Chemical Communications, 1993, , 612.	2.0	21
151	Clathrate formation with Troeger base analogues. Journal of the Chemical Society Perkin Transactions II, 1991, , 47.	0.9	34
152	Efficient Encapsulation and Controlled Release of N,N-Diethyl-3-methylbenzamide (DEET) from Oil-in-Water Emulsions Stabilized by Cationic Nanocellulose and Silica Nanoparticles. Journal of the Brazilian Chemical Society, 0, , .	0.6	0

10