
Emmanuel Bourinet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1447121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impact of C-tactile low-threshold mechanoreceptors on affective touch and social interactions in mice. Science Advances, 2022, 8, .	4.7	20
2	Epigenetics Involvement in Oxaliplatin-Induced Potassium Channel Transcriptional Downregulation and Hypersensitivity. Molecular Neurobiology, 2021, 58, 3575-3587.	1.9	8
3	TACAN Is an Ion Channel Involved in Sensing Mechanical Pain. Cell, 2020, 180, 956-967.e17.	13.5	120
4	5-HT2A receptor-dependent phosphorylation of mGlu2 receptor at Serine 843 promotes mGlu2 receptor-operated Gi/o signaling. Molecular Psychiatry, 2019, 24, 1610-1626.	4.1	17
5	Evaluation of the Spider (Phlogiellus genus) Phlotoxin 1 and Synthetic Variants as Antinociceptive Drug Candidates. Toxins, 2019, 11, 484.	1.5	13
6	Inhibition of Ca _v 3.2 calcium channels: A new target for colonic hypersensitivity associated with lowâ€grade inflammation. British Journal of Pharmacology, 2019, 176, 950-963.	2.7	26
7	TRPV1 promotes opioid analgesia during inflammation. Science Signaling, 2019, 12, .	1.6	26
8	Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons. Scientific Reports, 2019, 9, 3112.	1.6	45
9	The Low-Threshold Calcium Channel Cav3.2 Mediates Burst Firing of Mature Dentate Granule Cells. Cerebral Cortex, 2018, 28, 2594-2609.	1.6	24
10	Block of voltage-gated calcium channels by peptide toxins. Neuropharmacology, 2017, 127, 109-115.	2.0	55
11	A Bacterial Toxin with Analgesic Properties: Hyperpolarization of DRG Neurons by Mycolactone. Toxins, 2017, 9, 227.	1.5	28
12	Genetic alteration of the metal/redox modulation of Cav3.2 Tâ€ŧype calcium channel reveals its role in neuronal excitability. Journal of Physiology, 2016, 594, 3561-3574.	1.3	16
13	Fxyd2 regulates Al ² - and C-fiber mechanosensitivity and is required for the maintenance of neuropathic pain. Scientific Reports, 2016, 6, 36407.	1.6	22
14	T-type calcium channels in neuropathic pain. Pain, 2016, 157, S15-S22.	2.0	86
15	Transcriptional Profiling of Cutaneous MRGPRD Free Nerve Endings and C-LTMRs. Cell Reports, 2015, 10, 1007-1019.	2.9	45
16	The Low-Threshold Calcium Channel Cav3.2 Determines Low-Threshold Mechanoreceptor Function. Cell Reports, 2015, 10, 370-382.	2.9	154
17	T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants. Frontiers in Behavioral Neuroscience, 2014, 8, 92.	1.0	62
18	Cav3.2 calcium channels: The key protagonist in the supraspinal effect of paracetamol. Pain, 2014, 155, 764-772.	2.0	52

EMMANUEL BOURINET

#	Article	IF	CITATIONS
19	The Deubiquitinating Enzyme USP5 Modulates Neuropathic and Inflammatory Pain by Enhancing Cav3.2 Channel Activity. Neuron, 2014, 83, 1144-1158.	3.8	197
20	Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain, 2014, 155, 2534-2544.	2.0	112
21	T-type calcium channels in chronic pain: mouse models and specific blockers. Pflugers Archiv European Journal of Physiology, 2014, 466, 707-717.	1.3	41
22	Calcium-Permeable Ion Channels in Pain Signaling. Physiological Reviews, 2014, 94, 81-140.	13.1	249
23	GINIP, a C αi -Interacting Protein, Functions as a Key Modulator of Peripheral GABA B Receptor-Mediated Analgesia. Neuron, 2014, 84, 123-136.	3.8	49
24	T-Type Calcium Channels in Pain Neuronal Circuits. , 2014, , 115-133.		0
25	State-dependent properties of a new T-type calcium channel blocker enhance CaV3.2 selectivity and support analgesic effects. Pain, 2013, 154, 283-293.	2.0	98
26	TAFA4, a Chemokine-like Protein, Modulates Injury-Induced Mechanical and Chemical Pain Hypersensitivity in Mice. Cell Reports, 2013, 5, 378-388.	2.9	116
27	Alleviating Pain Hypersensitivity through Activation of Type 4 Metabotropic Glutamate Receptor. Journal of Neuroscience, 2013, 33, 18951-18965.	1.7	52
28	AKAP79 modulation of L-type channels involves disruption of intramolecular interactions in the Ca _V 1.2 subunit. Channels, 2012, 6, 157-165.	1.5	14
29	Oxaliplatinâ€induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Molecular Medicine, 2011, 3, 266-278.	3.3	304
30	T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11268-11273.	3.3	129
31	Heterodimerization of ORL1 and Opioid Receptors and Its Consequences for N-type Calcium Channel Regulation. Journal of Biological Chemistry, 2010, 285, 1032-1040.	1.6	77
32	T-Type Calcium Channel Inhibition Underlies the Analgesic Effects of the Endogenous Lipoamino Acids. Journal of Neuroscience, 2009, 29, 13106-13114.	1.7	96
33	The NALCN ion channel is activated by M3 muscarinic receptors in a pancreatic β ell line. EMBO Reports, 2009, 10, 873-880.	2.0	116
34	Animal Models of Chemotherapy-Evoked Painful Peripheral Neuropathies. Neurotherapeutics, 2009, 6, 620-629.	2.1	94
35	T-type calcium channels as targets of analgesics: concept validation. Douleur Et Analgesie, 2008, 21, 189-193.	0.2	0
36	Voltage-gated calcium channels in chronic pain: emerging role of alternative splicing. Pflugers Archiv European Journal of Physiology, 2008, 456, 459-466.	1.3	25

EMMANUEL BOURINET

#	Article	IF	CITATIONS
37	A Destructive Interaction Mechanism Accounts for Dominant-Negative Effects of Misfolded Mutants of Voltage-Gated Calcium Channels. Journal of Neuroscience, 2008, 28, 4501-4511.	1.7	71
38	Stable Membrane Expression of Postsynaptic Ca _V 1.2 Calcium Channel Clusters Is Independent of Interactions with AKAP79/150 and PDZ Proteins. Journal of Neuroscience, 2008, 28, 13845-13855.	1.7	50
39	Assessing the Chemical and Biological Diversity of an Ion Channels Knowledge Database. Channels, 2007, 1, 291-299.	1.5	3
40	Ligand-Based Virtual Screening to Identify New T-Type Calcium Channel Blockers. Channels, 2007, 1, 300-304.	1.5	13
41	ORL1 receptor–mediated internalization of N-type calcium channels. Nature Neuroscience, 2006, 9, 31-40.	7.1	151
42	Voltage-dependent calcium channels and cardiac pacemaker activity: From ionic currents to genes. Progress in Biophysics and Molecular Biology, 2006, 90, 38-63.	1.4	99
43	Voltage Gated Calcium Channels as Targets for Analgesics. Current Topics in Medicinal Chemistry, 2005, 5, 539-546.	1.0	44
44	Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO Journal, 2005, 24, 315-324.	3.5	388
45	Post-Genomic Insights into T-Type Calcium Channel Functions in Neurons. , 2005, , 326-333.		0
46	Plasma Membrane Expression of T-type Calcium Channel α1 Subunits Is Modulated by High Voltage-activated Auxiliary Subunits. Journal of Biological Chemistry, 2004, 279, 29263-29269.	1.6	106
47	Differential targeting of the L-type Ca2+ channel alpha1C (CaV1.2) to synaptic and extrasynaptic compartments in hippocampal neurons. European Journal of Neuroscience, 2004, 19, 2109-2122.	1.2	137
48	Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nature Neuroscience, 2004, 7, 118-125.	7.1	128
49	Dissecting the functional role of different isoforms of the L-type Ca2+ channel. Journal of Clinical Investigation, 2004, 113, 1382-1384.	3.9	16
50	Dissecting the functional role of different isoforms of the L-type Ca2+ channel. Journal of Clinical Investigation, 2004, 113, 1382-1384.	3.9	11
51	Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5543-5548.	3.3	428
52	Trafficking of L-type Calcium Channels Mediated by the Postsynaptic Scaffolding Protein AKAP79. Journal of Biological Chemistry, 2002, 277, 33598-33603.	1.6	118
53	Multiple determinants in voltage-dependent P/Q calcium channels control their retention in the endoplasmic reticulum. European Journal of Neuroscience, 2002, 16, 883-895.	1.2	48
54	Specific contribution of human Tâ€ŧype calcium channel isotypes (α 1G , α 1H and α 1I) to neuronal excitability. Journal of Physiology, 2002, 540, 3-14.	1.3	203

EMMANUEL BOURINET

#	Article	IF	CITATIONS
55	Interaction of SNX482 with Domains III and IV Inhibits Activation Gating of $\hat{1}\pm 1E$ (CaV2.3) Calcium Channels. Biophysical Journal, 2001, 81, 79-88.	0.2	136
56	Alternatively Spliced α1G (CaV3.1) Intracellular Loops Promote Specific T-Type Ca2+ Channel Gating Properties. Biophysical Journal, 2001, 80, 1238-1250.	0.2	126
5 7	Multiple structural elements contribute to voltage-dependent facilitation of neuronal α1C (CaV1.2) L-type calcium channels. Neuropharmacology, 2001, 40, 1050-1057.	2.0	12
58	Amino Acid Residues Outside of the Pore Region Contribute to N-type Calcium Channel Permeation. Journal of Biological Chemistry, 2001, 276, 5726-5730.	1.6	45
59	T-type calcium currents in rat cardiomyocytes during postnatal development: contribution to hormone secretion. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2540-H2548.	1.5	80
60	Specific Properties of T-type Calcium Channels Generated by the Human $\hat{I}\pm 1I$ Subunit. Journal of Biological Chemistry, 2000, 275, 16530-16535.	1.6	124
61	Molecular and Functional Properties of the Human α1G Subunit That Forms T-type Calcium Channels. Journal of Biological Chemistry, 2000, 275, 6090-6100.	1.6	209
62	Determinants of voltage-dependent inactivation affect Mibefradil block of calcium channels. Neuropharmacology, 2000, 39, 1-10.	2.0	65
63	Splicing of α1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nature Neuroscience, 1999, 2, 407-415.	7.1	393
64	Antisense depletion of β-subunits fails to affect T-type calcium channels properties in a neuroblastoma cell line. Neuropharmacology, 1998, 37, 701-708.	2.0	58
65	[5] Molecular physiology of human cardiovascular ion channels: From electrophysiology to molecular genetics. Methods in Enzymology, 1998, 293, 71-88.	0.4	7
66	Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit. Nature, 1997, 385, 442-446.	13.7	455
67	Beta subunit coexpression and the alpha1 subunit domain I-II linker affect piperidine block of neuronal calcium channels. Journal of Neuroscience, 1996, 16, 2430-2443.	1.7	40
68	The α _{1E} Calcium Channel Exhibits Permeation Properties Similar to Low-Voltage-Activated Calcium Channels. Journal of Neuroscience, 1996, 16, 4983-4993.	1.7	150
69	Determinants of the G protein-dependent opioid modulation of neuronal calcium channels Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1486-1491.	3.3	250
70	Nickel Block of a Family of Neuronal Calcium Channels: Subtype- and Subunit-Dependent Action at Multiple Sites. Journal of Membrane Biology, 1996, 151, 77-90.	1.0	188
71	cAMP-dependent phosphorylation of the cardiac L-type Ca channel: A missing link?. Biochimie, 1995, 77, 957-962.	1.3	34
72	Calcium currents recorded from a neuronal α1CL-type calcium channel inXenopusoocytes. FEBS Letters, 1994, 344, 87-90.	1.3	29

#	Article	IF	CITATIONS
73	Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q- and P-type channels Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10576-10580.	3.3	336
74	Cyclic AMP-dependent regulation of P-type calcium channels expressed in Xenopus oocytes. Pflugers Archiv European Journal of Physiology, 1993, 423, 173-180.	1.3	20
75	Functional properties of a neuronal class C L-type calcium channel. Neuropharmacology, 1993, 32, 1117-1126.	2.0	160
76	Regulation by protein kinase-C of putative P-type Ca channels expressed in Xenopus oocytes from cerebellar mRNA. FEBS Letters, 1993, 317, 118-124.	1.3	21
77	Electrophysiological characterization of a TTX - sensitive sodium current in native Xenopus oocytes. Proceedings of the Royal Society B: Biological Sciences, 1992, 250, 127-132.	1.2	6
78	EndogenousXenopus-oocyte Ca-channels are regulated by protein kinases A and C. FEBS Letters, 1992, 299, 5-9.	1.3	51
79	Protein kinase C regulation of cardiac calcium channels expressed in Xenopus oocytes. Pflugers Archiv European Journal of Physiology, 1992, 421, 247-255	1.3	64