
ClÃjudia Cavadas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1447067/publications.pdf Version: 2024-02-01

<u>CIÃ:ΠΟΙΑ CΑVΑDAS</u>

#	Article	IF	CITATIONS
1	OUP accepted manuscript. Nutrition Reviews, 2022, , .	5.8	2
2	Skin senescence: mechanisms and impact on whole-body aging. Trends in Molecular Medicine, 2022, 28, 97-109.	6.7	69
3	SIRT2 Deficiency Exacerbates Hepatic Steatosis via a Putative Role of the ER Stress Pathway. International Journal of Molecular Sciences, 2022, 23, 6790.	4.1	9
4	PET Imaging of the Neuropeptide Y System: A Systematic Review. Molecules, 2022, 27, 3726.	3.8	3
5	Peripheral biomarkers to diagnose obstructive sleep apnea in adults: A systematic review and meta-analysis. Sleep Medicine Reviews, 2022, 64, 101659.	8.5	14
6	Common risk factors and therapeutic targets in obstructive sleep apnea and osteoarthritis: An unexpectable link?. Pharmacological Research, 2021, 164, 105369.	7.1	5
7	Neuropeptide Y (NPY) intranasal delivery alleviates Machado–Joseph disease. Scientific Reports, 2021, 11, 3345.	3.3	11
8	Long-term continuous positive airway pressure treatment ameliorates biological clock disruptions in obstructive sleep apnea. EBioMedicine, 2021, 65, 103248.	6.1	18
9	PI3K/AKT/MTOR and ERK1/2-MAPK signaling pathways are involved in autophagy stimulation induced by caloric restriction or caloric restriction mimetics in cortical neurons. Aging, 2021, 13, 7872-7882.	3.1	15
10	The NutriClock Study Protocol - Assessing the Impact of a Chrononutrition Intervention in Patients With Cardiometabolic Disturbances. Current Developments in Nutrition, 2021, 5, 468.	0.3	0
11	Small-molecule modulators of the circadian clock: Pharmacological potentials in circadian-related diseases. Drug Discovery Today, 2021, 26, 1620-1641.	6.4	20
12	Blueberry Counteracts Prediabetes in a Hypercaloric Diet-Induced Rat Model and Rescues Hepatic Mitochondrial Bioenergetics. Nutrients, 2021, 13, 4192.	4.1	10
13	Blueberry Consumption Challenges Hepatic Mitochondrial Bioenergetics and Elicits Transcriptomics Reprogramming in Healthy Wistar Rats. Pharmaceutics, 2020, 12, 1094.	4.5	4
14	Trehalose alleviates the phenotype of Machado–Joseph disease mouse models. Journal of Translational Medicine, 2020, 18, 161.	4.4	21
15	Neuropeptide Y Enhances Progerin Clearance and Ameliorates the Senescent Phenotype of Human Hutchinson-Gilford Progeria Syndrome Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1073-1078.	3.6	14
16	Dichotomous Sirtuins: Implications for Drug Discovery in Neurodegenerative and Cardiometabolic Diseases. Trends in Pharmacological Sciences, 2019, 40, 1021-1039.	8.7	24
17	The importance of determining circadian parameters in pharmacological studies. British Journal of Pharmacology, 2019, 176, 2827-2847.	5.4	30
18	Molecular Mechanisms and Cellular Pathways Implicated in Machado-Joseph Disease Pathogenesis. Advances in Experimental Medicine and Biology, 2018, 1049, 349-367.	1.6	18

ClÃiudia Cavadas

#	Article	IF	CITATIONS
19	Dipeptidyl peptidase IV (DPP-IV) inhibition prevents fibrosis in adipose tissue of obese mice. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 403-413.	2.4	21
20	Role of Beta-adrenergic Receptors and Sirtuin Signaling in the Heart During Aging, Heart Failure, and Adaptation to Stress. Cellular and Molecular Neurobiology, 2018, 38, 109-120.	3.3	36
21	In vitro susceptibility of Trypanosoma brucei brucei to selected essential oils and their major components. Experimental Parasitology, 2018, 190, 34-40.	1.2	20
22	NEUROPEPTIDE Y RESCUES AGING PHENOTYPE OF HUMAN HUTCHINSON-GILFORD PROGERIA SYNDROME FIBROBLASTS. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR11-1.	0.0	0
23	Unraveling the Role of Ataxin-2 in Metabolism. Trends in Endocrinology and Metabolism, 2017, 28, 309-318.	7.1	23
24	Hypoxia mimetic induces lipid accumulation through mitochondrial dysfunction and stimulates autophagy in murine preadipocyte cell line. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 673-682.	2.4	19
25	Hypothalamic Dysfunction in Obesity and Metabolic Disorders. Advances in Neurobiology, 2017, 19, 73-116.	1.8	31
26	Obstructive Sleep Apnea and Hallmarks of Aging. Trends in Molecular Medicine, 2017, 23, 675-692.	6.7	56
27	The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Human Molecular Genetics, 2017, 26, 4105-4117.	2.9	67
28	Unravelling the mechanisms of neuronal, hepatic, cardiac and renal cell toxicity of two synthetic cannabinoids, 5F-PB 22 and XLR-11. Toxicology Letters, 2017, 280, S87.	0.8	0
29	Quizzes as an active learning strategy: A study with students of pharmaceutical sciences. , 2017, , .		2
30	Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation. Aging, 2016, 8, 1470-1484.	3.1	50
31	The Adenosinergic System in Diabetic Retinopathy. Journal of Diabetes Research, 2016, 2016, 1-8.	2.3	14
32	The pathophysiology of defective proteostasis in the hypothalamus — from obesity to ageing. Nature Reviews Endocrinology, 2016, 12, 723-733.	9.6	74
33	Caloric restriction blocks neuropathology and motor deficits in Machado–Joseph disease mouse models through SIRT1 pathway. Nature Communications, 2016, 7, 11445.	12.8	86
34	Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiology of Disease, 2016, 95, 210-224.	4.4	98
35	Antileishmanial activity of antiretroviral drugs combined with miltefosine. Parasitology Research, 2016, 115, 3881-3887.	1.6	5
36	Hypothalamic involvement in premature aging laminopathies. Orphanet Journal of Rare Diseases, 2015, 10, .	2.7	0

CLáUDIA CAVADAS

#	Article	IF	CITATIONS
37	Neuropeptide Y: An Anti-Aging Player?. Trends in Neurosciences, 2015, 38, 701-711.	8.6	37
38	Impaired adrenal medullary function in a mouse model of depression induced by unpredictable chronic stress. European Neuropsychopharmacology, 2015, 25, 1753-1766.	0.7	18
39	NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?. Autophagy, 2015, 11, 1431-1433.	9.1	20
40	Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado–Joseph disease. Human Molecular Genetics, 2015, 24, 5451-5463.	2.9	43
41	Neuropeptide Y stimulates autophagy in hypothalamic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1642-E1651.	7.1	60
42	Neuropeptide Y system in the retina: From localization to function. Progress in Retinal and Eye Research, 2015, 47, 19-37.	15.5	25
43	Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro. ASN Neuro, 2015, 7, 175909141559829.	2.7	24
44	Emerging Role of Sirtuin 2 in the Regulation of Mammalian Metabolism. Trends in Pharmacological Sciences, 2015, 36, 756-768.	8.7	201
45	Fluoxetine Induces Proliferation and Inhibits Differentiation of Hypothalamic Neuroprogenitor Cells In Vitro. PLoS ONE, 2014, 9, e88917.	2.5	11
46	Chronic Unpredictable Stress Induces Catecholaminergic System Changes in Mouse Adrenal Gland. , 2014, , 205.		0
47	Alterations in phospholipidomic profile in the brain of mouse model of depression induced by chronic unpredictable stress. Neuroscience, 2014, 273, 1-11.	2.3	58
48	Emerging novel roles of neuropeptide Y in the retina: From neuromodulation to neuroprotection. Progress in Neurobiology, 2014, 112, 70-79.	5.7	23
49	Role of hypothalamic neurogenesis in feeding regulation. Trends in Endocrinology and Metabolism, 2014, 25, 80-88.	7.1	88
50	Catecholamine Release Modulation by Adenosine Through A2a Receptors in Mouse Chromaffin Cells in Culture. , 2014, , 244-245.		0
51	Catecholamine Release Modulation by Adenosine through A2AReceptors in Mouse Chromaffin Cell Culture. , 2014, , 235.		0
52	Neuropeptide Y Receptors Y ₁ and Y ₂ are Present in Neurons and Glial Cells in Rat Retinal Cells in Culture. , 2013, 54, 429.		27
53	Progenitor Cells in Chromospheres: In Response to Arthur S. Tischler. Stem Cells Translational Medicine, 2013, 2, 1020-1020.	3.3	0
54	Neuropeptide Y receptors activation protects rat retinal neural cells against necrotic and apoptotic cell death induced by glutamate. Cell Death and Disease, 2013, 4, e636-e636.	6.3	54

CLáUDIA CAVADAS

#	Article	IF	CITATIONS
55	Effect of Diabetes/Hyperglycemia on the Rat Retinal Adenosinergic System. PLoS ONE, 2013, 8, e67499.	2.5	21
56	Isolation, Characterization, and Differentiation of Progenitor Cells from Human Adult Adrenal Medulla. Stem Cells Translational Medicine, 2012, 1, 783-791.	3.3	45
57	Contribution of TNF receptor 1 to retinal neural cell death induced by elevated glucose. Molecular and Cellular Neurosciences, 2012, 50, 113-123.	2.2	42
58	Regulation of catecholamine release in human adrenal chromaffin cells by β-adrenoceptors. Neurochemistry International, 2012, 60, 387-393.	3.8	23
59	Intracellular mechanisms coupled to NPY Y2 and Y5 receptor activation and lipid accumulation in murine adipocytes. Neuropeptides, 2012, 46, 359-366.	2.2	31
60	Dipeptidyl-peptidase-IV by cleaving neuropeptide Y induces lipid accumulation and PPAR-γ expression. Peptides, 2012, 37, 49-54.	2.4	37
61	Moderate Long-Term Modulation of Neuropeptide Y in Hypothalamic Arcuate Nucleus Induces Energy Balance Alterations in Adult Rats. PLoS ONE, 2011, 6, e22333.	2.5	44
62	Effects of 3,4-Methylenedioxymethamphetamine Administration on Retinal Physiology in the Rat. PLoS ONE, 2011, 6, e29583.	2.5	9
63	Proliferative Hypothalamic Neurospheres Express NPY, AGRP, POMC, CART and Orexin-A and Differentiate to Functional Neurons. PLoS ONE, 2011, 6, e19745.	2.5	31
64	Regulation of catecholamine release and tyrosine hydroxylase in human adrenal chromaffin cells by interleukinâ€1β: role of neuropeptide Y and nitric oxide. Journal of Neurochemistry, 2009, 109, 911-922.	3.9	33
65	Neuropeptide Y inhibits [Ca ²⁺] _i changes in rat retinal neurons through NPY Y ₁ , Y ₄ , and Y ₅ receptors. Journal of Neurochemistry, 2009, 109, 1508-1515.	3.9	18
66	Stress-Induced Hypertension and Increased Sympathetic Activity in Mice Overexpressing Neuropeptide Y in Noradrenergic Neurons. Neuroendocrinology, 2009, 89, 351-360.	2.5	40
67	Neuropeptide Y Family Peptides. , 2009, , 43-66.		0
68	Interaction between neuropeptide Y (NPY) and brainâ€derived neurotrophic factor in NPYâ€mediated neuroprotection against excitotoxicity: a role for microglia. European Journal of Neuroscience, 2008, 27, 2089-2102.	2.6	50
69	Neuropeptide Y protects retinal neural cells against cell death induced by ecstasy. Neuroscience, 2008, 152, 97-105.	2.3	39
70	Neuropeptide Y stimulates retinal neural cell proliferation – involvement of nitric oxide. Journal of Neurochemistry, 2008, 105, 2501-2510.	3.9	46
71	Neuropeptide Y regulates catecholamine release evoked by interleukin-1β in mouse chromaffin cells. Peptides, 2007, 28, 310-314.	2.4	25
72	NPY Y1 receptor is not involved in the hemodynamic response to an acute cold pressor test in mice. Peptides, 2007, 28, 315-319.	2.4	4

CLáUDIA CAVADAS

#	Article	IF	CITATIONS
73	NPY in rat retina is present in neurons, in endothelial cells and also in microglial and Müller cells. Neurochemistry International, 2007, 50, 757-763.	3.8	30
74	Intracellular signaling mechanisms mediating catecholamine release upon activation of NPY Y1receptors in mouse chromaffin cells. Journal of Neurochemistry, 2007, 103, 896-903.	3.9	16
75	Deletion of the neuropeptide Y (NPY) Y ₁ receptor gene reveals a regulatory role of NPY on catecholamine synthesis and secretion. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10497-10502.	7.1	49
76	Up-regulation of neuropeptide Y levels and modulation of glutamate release through neuropeptide Y receptors in the hippocampus of kainate-induced epileptic rats. Journal of Neurochemistry, 2005, 93, 163-170.	3.9	45
77	Neuropeptide Y expression, localization and cellular transducing effects in HUVEC. Biology of the Cell, 2005, 97, 457-467.	2.0	25
78	The Putative Neuroprotective Role of Neuropeptide Y in the Central Nervous System. CNS and Neurological Disorders, 2005, 4, 331-347.	4.3	82
79	Blood sampling methodology is crucial for precise measurement of plasma catecholamines concentrations in mice. Pflugers Archiv European Journal of Physiology, 2003, 447, 254-258.	2.8	63
80	Angiotensin II mediates catecholamine and neuropeptide Y secretion in human adrenal chromaffin cells through the AT1 receptor. Regulatory Peptides, 2003, 111, 61-65.	1.9	27
81	NPY, NPY receptors, and DPP IV activity are modulated by LPS, TNF-α and IFN-γ in HUVEC. Regulatory Peptides, 2003, 116, 71-79.	1.9	31
82	Loss of dipeptidylpeptidase IV activity in chronic rhinosinusitis contributes to the neurogenic inflammation induced by substance P in the nasal mucosa. FASEB Journal, 2002, 16, 1132-1134.	0.5	57
83	Neuropeptide Y and its receptors as potential therapeutic drug targets. Clinica Chimica Acta, 2002, 326, 3-25.	1.1	152
84	Dibasic cleavage site is required for sorting to the regulated secretory pathway for both pro- and neuropeptide Y. Journal of Neurochemistry, 2002, 81, 1166-1175.	3.9	26
85	Catecholamine and Neuropeptide Y Secretion from Human Adrenal Chromaffin Cells. Annals of the New York Academy of Sciences, 2002, 971, 332-334.	3.8	11
86	Differential Secretion of Catecholamine and Neuropeptide Y in Response to KCl from Mice Chromaffin Cells. Annals of the New York Academy of Sciences, 2002, 971, 335-337.	3.8	8
87	Disappearance Rate of Catecholamines, Total Metanephrines, and Neuropeptide Y from the Plasma of Patients after Resection of Pheochromocytoma. Clinical Chemistry, 2001, 47, 1075-1082.	3.2	65
88	Cardiovascular effects of fentanyl in conscious rats. Pflugers Archiv European Journal of Physiology, 2001, 443, 155-162.	2.8	3
89	NPY Regulates Catecholamine Secretion from Human Adrenal Chromaffin Cells. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5956-5963.	3.6	64
90	Interplay Between Galanin and Leptin in the Hypothalamic Control of Feeding via Corticotropin-Releasing Hormone and Neuropeptide Y. Diabetes, 2001, 50, 2666-2672.	0.6	57

#	Article	IF	CITATIONS
91	NPY Regulates Catecholamine Secretion from Human Adrenal Chromaffin Cells. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5956-5963.	3.6	24
92	In vitro study of the interaction of Tilia europeae L. aqueous extract with GABAA receptors in rat brain. , 1997, 11, 17-21.		9
93	The Superpowers of Our Sleep. Frontiers for Young Minds, 0, 8, .	0.8	0