Harrie J M Gijsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1446880/publications.pdf

Version: 2024-02-01

567281 677142 24 908 15 citations h-index papers

g-index 25 25 25 1201 docs citations times ranked citing authors all docs

22

#	Article	IF	CITATIONS
1	Modulating physicochemical properties of tetrahydropyridine-2-amine BACE1 inhibitors with electron-withdrawing groups: A systematic study. European Journal of Medicinal Chemistry, 2022, 228, 114028.	5.5	О
2	A Brain-Penetrant and Bioavailable Pyrazolopiperazine BACE1 Inhibitor Elicits Sustained Reduction of Amyloid \hat{I}^2 In Vivo. ACS Medicinal Chemistry Letters, 2022, 13, 76-83.	2.8	3
3	Small-molecule BACE1 inhibitors: a patent literature review (2011 to 2020). Expert Opinion on Therapeutic Patents, 2021, 31, 25-52.	5.0	22
4	Structure-Based Approaches to Improving Selectivity through Utilizing Explicit Water Molecules: Discovery of Selective β-Secretase (BACE1) Inhibitors over BACE2. Journal of Medicinal Chemistry, 2021, 64, 3075-3085.	6.4	11
5	JNJ-67569762, A 2-Aminotetrahydropyridine-Based Selective BACE1 Inhibitor Targeting the S3 Pocket: From Discovery to Clinical Candidate. Journal of Medicinal Chemistry, 2021, 64, 14175-14191.	6.4	10
6	Discovery of Extremely Selective Fused Pyridine-Derived β-Site Amyloid Precursor Protein-Cleaving Enzyme (BACE1) Inhibitors with High In Vivo Efficacy through 10s Loop Interactions. Journal of Medicinal Chemistry, 2021, 64, 14165-14174.	6.4	4
7	Evaluation of a Series of \hat{I}^2 -Secretase 1 Inhibitors Containing Novel Heteroaryl-Fused-Piperazine Amidine Warheads. ACS Medicinal Chemistry Letters, 2019, 10, 1159-1165.	2.8	20
8	Trifluoromethyl Dihydrothiazineâ€Based βâ€Secretase (BACE1) Inhibitors with Robust Central βâ€Amyloid Reduction and Minimal Covalent Binding Burden. ChemMedChem, 2019, 14, 1894-1910.	3.2	8
9	Discovery of an Extremely Potent Thiazine-Based \hat{I}^2 -Secretase Inhibitor with Reduced Cardiovascular and Liver Toxicity at a Low Projected Human Dose. Journal of Medicinal Chemistry, 2019, 62, 9331-9337.	6.4	7
10	Structure-Based Design of Selective \hat{I}^2 -Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitors: Targeting the Flap to Gain Selectivity over BACE2. Journal of Medicinal Chemistry, 2019, 62, 5080-5095.	6.4	29
11	New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 761-777.	2.2	57
12	Discovery and Chemical Development of JNJ-50138803, a Clinical Candidate BACE1 Inhibitor. ACS Symposium Series, 2018, , 91-114.	0.5	0
13	Optimization of 1,4-Oxazine \hat{l}^2 -Secretase 1 (BACE1) Inhibitors Toward a Clinical Candidate. Journal of Medicinal Chemistry, 2018, 61, 5292-5303.	6.4	15
14	Discovery of Potent and Centrally Active 6-Substituted 5-Fluoro-1,3-dihydro-oxazine \hat{l}^2 -Secretase (BACE1) Inhibitors via Active Conformation Stabilization. Journal of Medicinal Chemistry, 2018, 61, 5525-5546.	6.4	28
15	Rational Design of Novel 1,3-Oxazine Based \hat{l}^2 -Secretase (BACE1) Inhibitors: Incorporation of a Double Bond To Reduce P-gp Efflux Leading to Robust A \hat{l}^2 Reduction in the Brain. Journal of Medicinal Chemistry, 2018, 61, 5122-5137.	6.4	29
16	The evolution of amidine-based brain penetrant BACE1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2033-2045.	2.2	138
17	Design and Synthesis of a Novel Series of Bicyclic Heterocycles As Potent \hat{I}^3 -Secretase Modulators. Journal of Medicinal Chemistry, 2012, 55, 9089-9106.	6.4	59
18	-Secretase Modulators: Can We Combine Potency with Safety?. International Journal of Alzheimer's Disease, 2012, 2012, 1-10.	2.0	27

#	Article	IF	CITATION
19	5-Sulfonyl-benzimidazoles as selective CB2 agonists-Part 2. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 547-552.	2.2	26
20	Tricyclic 3,4-dihydropyrimidine-2-thione derivatives as potent TRPA1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 797-800.	2.2	50
21	γ-Secretase Modulators as Potential Disease Modifying Anti-Alzheimer's Drugs. Journal of Medicinal Chemistry, 2011, 54, 669-698.	6.4	149
22	Analogues of Morphanthridine and the Tear Gas Dibenz[$\langle i \rangle b \langle i \rangle, \langle i \rangle f \langle i \rangle$][1,4]oxazepine (CR) as Extremely Potent Activators of the Human Transient Receptor Potential Ankyrin 1 (TRPA1) Channel. Journal of Medicinal Chemistry, 2010, 53, 7011-7020.	6.4	82
23	5-Sulfonyl-benzimidazoles as selective CB2 agonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2574-2579.	2.2	32
24	Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor. Toxicology and Applied Pharmacology, 2008, 231, 150-156.	2.8	102