Tommy Dalgaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1446628/publications.pdf

Version: 2024-02-01

103 papers 5,049 citations

94433 37 h-index 95266 68 g-index

104 all docs

 $\begin{array}{c} 104 \\ \\ \text{docs citations} \end{array}$

times ranked

104

6980 citing authors

#	Article	IF	CITATIONS
1	A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystems and Environment, 2001, 87, 51-65.	5. 3	347
2	Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landscape and Urban Planning, 2014, 125, 89-104.	7.5	333
3	Agroecology, scaling and interdisciplinarity. Agriculture, Ecosystems and Environment, 2003, 100, 39-51.	5. 3	252
4	A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecological Modelling, 2016, 319, 190-207.	2. 5	247
5	Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renewable and Sustainable Energy Reviews, 2015, 43, 244-263.	16.4	209
6	Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environmental Science and Policy, 2008, 11, 144-152.	4.9	197
7	Policies for agricultural nitrogen managementâ€"trends, challenges and prospects for improved efficiency in Denmark. Environmental Research Letters, 2014, 9, 115002.	5.2	184
8	Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany, 2013, 31, 129-144.	0.5	175
9	Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences, 2012, 9, 5143-5160.	3.3	162
10	Groundwater nitrate response to sustainable nitrogen management. Scientific Reports, 2017, 7, 8566.	3.3	152
11	Potential greenhouse gas emission reductions in soybean farming: aÂcombined use of Life Cycle Assessment and Data Envelopment Analysis. Journal of Cleaner Production, 2013, 54, 89-100.	9.3	147
12	Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodiversity and Conservation, 2013, 22, 2151-2166.	2.6	124
13	Joint Life Cycle Assessment and Data Envelopment Analysis for the benchmarking of environmental impacts in rice paddy production. Journal of Cleaner Production, 2015, 106, 521-532.	9.3	118
14	Trend Reversal of Nitrate in Danish Groundwater - a Reflection of Agricultural Practices and Nitrogen Surpluses since 1950. Environmental Science & Environmental Science & 2011, 45, 228-234.	10.0	102
15	Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment. Ambio, 2017, 46, 129-142.	5.5	102
16	Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region. Ecosphere, 2013, 4, 1-26.	2.2	94
17	Buffers for biomass production in temperate European agriculture: A review and synthesis on function, ecosystem services and implementation. Biomass and Bioenergy, 2013, 55, 53-67.	5.7	88
18	Impacts of climate change adaptation options on soil functions: A review of European caseâ€studies. Land Degradation and Development, 2018, 29, 2378-2389.	3.9	74

#	Article	IF	CITATIONS
19	Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment. Science of the Total Environment, 2016, 573, 608-626.	8.0	73
20	Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach. Science of the Total Environment, 2017, 598, 497-512.	8.0	63
21	Spatial soil zinc content distribution from terrain parameters: A GIS-based decision-tree model in Lebanon. Environmental Pollution, 2010, 158, 520-528.	7.5	61
22	Biomass energy in organic farmingâ€"the potential role of short rotation coppice. Biomass and Bioenergy, 2005, 28, 237-248.	5.7	60
23	Can organic farming help to reduce N-losses?. Nutrient Cycling in Agroecosystems, 1998, 52, 277-287.	2.2	58
24	An indicator-based method for quantifying farm multifunctionality. Ecological Indicators, 2013, 25, 166-179.	6.3	58
25	Looking at Biofuels and Bioenergy. Science, 2006, 312, 1743b-1744b.	12.6	54
26	Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence. Biogeosciences, 2012, 9, 3277-3286.	3.3	54
27	Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: Using digestate as a source of energy or for biochar production. Energy, 2019, 182, 594-605.	8.8	53
28	Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. Science of the Total Environment, 2017, 586, 226-240.	8.0	52
29	Can fuzzy cognitive mapping help in agricultural policy design and communication?. Land Use Policy, 2015, 45, 64-75.	5.6	51
30	Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation. Agricultural Systems, 2011, 104, 281-291.	6.1	49
31	Farm nitrogen balances in six European landscapes as an indicator for nitrogen losses and basis for improved management. Biogeosciences, 2012, 9, 5303-5321.	3.3	46
32	Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery. Journal of Cleaner Production, 2017, 142, 3859-3871.	9.3	46
33	Life Cycle Assessment of district heat production in a straw fired CHP plant. Biomass and Bioenergy, 2014, 68, 115-134.	5.7	44
34	Stakeholder Engagement and Knowledge Co-Creation in Water Planning: Can Public Participation Increase Cost-Effectiveness?. Water (Switzerland), 2017, 9, 191.	2.7	44
35	Energy consumption projection of Nepal: An econometric approach. Renewable Energy, 2014, 63, 432-444.	8.9	41
36	Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes. Biogeosciences, 2013, 10, 6279-6307.	3.3	40

#	Article	IF	CITATIONS
37	Energy input for tomato production what economy says, and what is good for the environment. Journal of Cleaner Production, 2015, 89, 99-109.	9.3	40
38	Modeling European ruminant production systems: Facing the challenges of climate change. Agricultural Systems, 2016, 147, 24-37.	6.1	40
39	Why Danish pig farms have far more land and pigs than Dutch farms? Implications for feed supply, manure recycling and production costs. Agricultural Systems, 2016, 144, 122-132.	6.1	40
40	Climatic and non-climatic drivers of spatiotemporal maize-area dynamics across the northern limit for maize productionâ€"A case study from Denmark. Agriculture, Ecosystems and Environment, 2011, 142, 291-302.	5.3	39
41	Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery. Science of the Total Environment, 2018, 619-620, 127-143.	8.0	38
42	Regional impacts of abolishing direct payments: An integrated analysis in four European regions. Agricultural Systems, 2011, 104, 110-121.	6.1	35
43	Environmental analysis of producing biochar and energy recovery from pulp and paper mill biosludge. Journal of Industrial Ecology, 2019, 23, 1039-1051.	5.5	34
44	A multi-criteria, ecosystem-service value method used to assess catchment suitability for potential wetland reconstruction in Denmark. Ecological Indicators, 2017, 77, 151-165.	6.3	33
45	Multiâ€criteria assessment of yellow, green, and woody biomasses: preâ€screening of potential biomasses as feedstocks for biorefineries. Biofuels, Bioproducts and Biorefining, 2015, 9, 545-566.	3.7	32
46	Nitrogen Surplusâ€"A Unified Indicator for Water Pollution in Europe?. Water (Switzerland), 2020, 12, 1197.	2.7	32
47	Human-driven topographic effects on the distribution of forest in a flat, lowland agricultural region. Journal of Chinese Geography, 2014, 24, 76-92.	3.9	30
48	A framework for nitrogen futures in the shared socioeconomic pathways. Global Environmental Change, 2020, 61, 102029.	7.8	30
49	Energy self-reliance, net-energy production and GHG emissions in Danish organic cash crop farms. Renewable Agriculture and Food Systems, 2008, 23, 30-37.	1.8	29
50	Potential N-losses in three scenarios for conversion to organic farming in a local area of Denmark. European Journal of Agronomy, 2002, 16, 207-217.	4.1	28
51	Abating N in Nordic agriculture - Policy, measures and way forward. Journal of Environmental Management, 2019, 236, 674-686.	7.8	27
52	Spatial distribution of soils determines export of nitrogen and dissolved organic carbon from an intensively managed agricultural landscape. Biogeosciences, 2012, 9, 4513-4525.	3.3	25
53	A model for simulating the timelines of field operations at a European scale for use in complex dynamic models. Biogeosciences, 2012, 9, 4487-4496.	3.3	22
54	Spatially differentiated strategies for reducing nitrate loads from agriculture in two Danish catchments. Journal of Environmental Management, 2018, 208, 77-91.	7.8	22

#	Article	IF	CITATIONS
55	Potential benefits of farm scale measures versus landscape measures for reducing nitrate loads in a Danish catchment. Science of the Total Environment, 2018, 637-638, 318-335.	8.0	22
56	Multifunctional agriculture and multifunctional landscapes — land use as an interface. , 2007, , 93-104.		22
57	Spatial and temporal variability of nitrous oxide emissions in a mixed farming landscape of Denmark. Biogeosciences, 2012, 9, 2989-3002.	3.3	20
58	Evaluating public participation in Denmark's water councils. Outlook on Agriculture, 2016, 45, 225-230.	3.4	20
59	Monitoring strategies and scale-appropriate hydrologic and biogeochemical modelling for natural resource management: Conclusions and recommendations from a session held at the iEMSs 2008. Environmental Modelling and Software, 2011, 26, 538-542.	4.5	19
60	A nitrogen budget for Denmark; developments between 1990 and 2010, and prospects for the future. Environmental Research Letters, 2014, 9, 115012.	5.2	18
61	Biogas in organic agriculture—effects on productivity, energy self-sufficiency and greenhouse gas emissions. Renewable Agriculture and Food Systems, 2014, 29, 28-41.	1.8	17
62	Where to implement local biotech innovations? A framework for multi-scale socio-economic and environmental impact assessment of Green Bio-Refineries. Land Use Policy, 2017, 68, 141-151.	5.6	16
63	Lag Time as an Indicator of the Link between Agricultural Pressure and Drinking Water Quality State. Water (Switzerland), 2020, 12, 2385.	2.7	16
64	Social capital factors affecting uptake of sustainable soil management practices: a literature review. Emerald Open Research, 0, 2, 8.	0.0	16
65	Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe. Land, 2022, 11, 780.	2.9	16
66	Environmental performance of Miscanthus as a fuel alternative for district heat production. Biomass and Bioenergy, 2015, 72, 104-116.	5.7	15
67	Possibilities for near-term bioenergy production and GHG-mitigation through sustainable intensification of agriculture and forestry in Denmark. Environmental Research Letters, 2017, 12, 114032.	5.2	15
68	Using spatial multi-criteria decision analysis to develop new and sustainable directions for the future use of agricultural land in Denmark. Ecological Indicators, 2019, 103, 34-42.	6.3	15
69	Policies for wetlands implementation in Denmark and Sweden – historical lessons and emerging issues. Land Use Policy, 2021, 101, 105206.	5.6	15
70	Nitrate Management Discourses in Poland and Denmarkâ€"Laggards or Leaders in Water Quality Protection?. Water (Switzerland), 2020, 12, 2371.	2.7	13
71	Introduction: Features of environmental sustainability in agriculture: some conceptual and operational issues. International Journal of Agricultural Resources, Governance and Ecology, 2006, 5, 107.	0.0	12
72	Does cadastral division of area-based ecosystem services obstruct comprehensive management?. Ecological Modelling, 2015, 295, 176-187.	2.5	11

#	Article	IF	Citations
73	Nitrogen flows and fate in rural landscapes. , 0, , 229-248.		10
74	A framework for a European network for a systematic environmental impact assessment of genetically modified organisms (GMO). BioRisk, 2012, 7, 73-97.	0.2	9
75	A comparison of disaggregated nitrogen budgets for Danish agriculture using Europe-wide and national approaches. Science of the Total Environment, 2018, 643, 890-901.	8.0	9
76	Targeted grassland production $\hat{a} \in A$ Danish case study on multiple benefits from converting cereal to grasslands for green biorefinery. Journal of Cleaner Production, 2019, 223, 917-927.	9.3	9
77	Cross-achievements between policies for drinking water protection. Journal of Environmental Management, 2002, 64, 77-83.	7.8	8
78	Methodological issues of modelling farm and landscape scale indicators for sustainable land systems. Geografisk Tidsskrift, 2006, 106, 35-43.	0.6	8
79	The relative importance of geophysical constraints, amenity values, and farm-related factors in the dynamics of grassland set-aside. Agriculture, Ecosystems and Environment, 2013, 164, 286-291.	5.3	6
80	Social capital factors affecting uptake of sustainable soil management practices: a literature review. Emerald Open Research, 0, 2, 8.	0.0	6
81	The Role of Stakeholder Engagement in Developing New Technologies and Innovation for Nitrogen Reduction in Waters: A Longitudinal Study. Water (Switzerland), 2021, 13, 3313.	2.7	6
82	Targeting sustainable greenhouse agriculture policies in China and Denmark: A comparative study. Land Use Policy, 2022, 119, 106148.	5.6	6
83	Multifunctional farming, multifunctional landscapes and rural development., 2007,, 183-193.		5
84	Obligatory inclusion of uncertainty avoids systematic underestimation of Danish pork water use and incentivizes provision of specific inventory data. Journal of Cleaner Production, 2019, 233, 1355-1365.	9.3	5
85	Can Organic Farming Help to Reduce National Energy Consumption and Emissions of Greenhouse Gasses in Denmark?., 2002,, 191-204.		5
86	Using visual erosion features to validate the application of water erosion models in Mediterranean karst environments: the case study of Lebanon. Zeitschrift Fþr Geomorphologie, 2010, 54, 27-49.	0.8	4
87	Methodological Difficulties of Conducting Agroecological Studies from a Statistical Perspective. Agroecology and Sustainable Food Systems, 2013, 37, 485-506.	1.9	4
88	Shrub Encroachment Following Wetland Creation in Mixedgrass Prairie Alters Grassland Vegetation and Soil. Environmental Management, 2020, 66, 1120-1132.	2.7	4
89	Targeted set-aside: Benefits from reduced nitrogen loading in Danish aquatic environments. Journal of Environmental Management, 2019, 247, 633-643.	7.8	3
90	N-Losses and Energy Use in a Scenario for Conversion to Organic Farming. Scientific World Journal, The, 2001, 1, 822-829.	2.1	2

#	Article	IF	Citations
91	Scaling from Farm to Landscape. , 2009, , 175-189.		2
92	Siteâ€specific modulators control how geophysical and socioâ€technical drivers shape land use and land cover. Geo: Geography and Environment, 2018, 5, e00060.	0.8	1
93	What does framing theory add to our understanding of collective decision making in nitrogen management?. Landscape Ecology, 2023, 38, 4139-4155.	4.2	1
94	Mapping conversations about land use: How modern farmers practice individuality. Empedocles, 2021, 12, 5-17.	0.1	1
95	Analysing Exemplary Policy Issues Using the MEA-Scope Framework., 2009,, 191-205.		1
96	Validation of an Agent-Based, Spatio-Temporal Model for Farming in the River Gudenå Landscape. Results from the MEA-Scope Case Study in Denmark. , 2009, , 239-254.		1
97	The MEA-Scope Modelling Approach. , 2009, , 101-121.		1
98	DNMARK: Danish Nitrogen Mitigation Assessment: Research and Know-how for a Sustainable, Low-Nitrogen Food Production., 2020,, 363-376.		1
99	Social factors influencing actor agency of nitrate management in local agricultural landscapes of Poland. Landscape Ecology, 2023, 38, 4157-4175.	4.2	1
100	Response to Comment on "Trend Reversal of Nitrate in Danish Groundwaterâ€"A Reflection of Agricultural Practices and Nitrogen Surpluses since 1950― Environmental Science & Dechnology, 2011, 45, 4189-4189.	10.0	0
101	Achieving Sustainable Nitrogen Management in Mixed Farming Landscapes Based on Collaborative Planning. Sustainability, 2021, 13, 2140.	3.2	0
102	Implementing the Indicators of the MEA-Scope Multifunctionality Impact Assessment Approach: A Gap Between Supply and Demand of NCOs?., 2009,, 207-219.		0
103	Nordic nitrogen and agriculture. TemaNord, 2017, , .	1.3	O