Anna StrÄkowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1446620/publications.pdf

Version: 2024-02-01

394421 454955 43 970 19 30 g-index citations h-index papers 43 43 43 654 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Bio-based Foam Insulation. Green Energy and Technology, 2022, , 177-216.	0.6	1
2	Coir Fibers Treated with Henna as a Potential Reinforcing Filler in the Synthesis of Polyurethane Composites. Materials, 2021, 14, 1128.	2.9	13
3	Effects of Physical and Chemical Modification of Sunflower Cake on Polyurethane Composite Foam Properties. Materials, 2021, 14, 1414.	2.9	12
4	Biobased Polyurethane Composite Foams Reinforced with Plum Stones and Silanized Plum Stones. International Journal of Molecular Sciences, 2021, 22, 4757.	4.1	14
5	Mechanical and Electrical Performance of Flexible Polymer Film Designed for a Textile Electrically-Conductive Path. Materials, 2021, 14, 2169.	2.9	2
6	Mechanically Strong Polyurethane Composites Reinforced with Montmorillonite-Modified Sage Filler (Salvia officinalis L.). International Journal of Molecular Sciences, 2021, 22, 3744.	4.1	22
7	Casein/Apricot Filler in the Production of Flame-Retardant Polyurethane Composites. Materials, 2021, 14, 3620.	2.9	13
8	Chlorine-Functional Silsesquioxanes (POSS-Cl) as Effective Flame Retardants and Reinforcing Additives for Rigid Polyurethane Foams. Molecules, 2021, 26, 3979.	3.8	10
9	Polyurethane Composites Reinforced with Walnut Shell Filler Treated with Perlite, Montmorillonite and Halloysite. International Journal of Molecular Sciences, 2021, 22, 7304.	4.1	17
10	Polyurethane Hybrid Composites Reinforced with Lavender Residue Functionalized with Kaolinite and Hydroxyapatite. Materials, 2021, 14, 415.	2.9	23
11	Bio-Based Rigid Polyurethane Foam Composites Reinforced with Bleached Curauá Fiber. International Journal of Molecular Sciences, 2021, 22, 11203.	4.1	12
12	Vermiculite Filler Modified with Casein, Chitosan, and Potato Protein as a Flame Retardant for Polyurethane Foams. International Journal of Molecular Sciences, 2021, 22, 10825.	4.1	15
13	Rigid Polyurethane Foams Based on Bio-Polyol and Additionally Reinforced with Silanized and Acetylated Walnut Shells for the Synthesis of Environmentally Friendly Insulating Materials. Materials, 2020, 13, 3245.	2.9	20
14	The Impact of Hemp Shives Impregnated with Selected Plant Oils on Mechanical, Thermal, and Insulating Properties of Polyurethane Composite Foams. Materials, 2020, 13, 4709.	2.9	24
15	New Flame Retardant Systems Based on Expanded Graphite for Rigid Polyurethane Foams. Applied Sciences (Switzerland), 2020, 10, 5817.	2.5	21
16	Rigid Polyurethane Foams Reinforced with POSS-Impregnated Sugar Beet Pulp Filler. Materials, 2020, 13, 5493.	2.9	19
17	Application of Walnut Shells-Derived Biopolyol in the Synthesis of Rigid Polyurethane Foams. Materials, 2020, 13, 2687.	2.9	25
18	Nutmeg filler as a natural compound for the production of polyurethane composite foams with antibacterial and anti-aging properties. Polymer Testing, 2020, 86, 106479.	4.8	52

#	Article	IF	CITATIONS
19	Fire Suppression and Thermal Behavior of Biobased Rigid Polyurethane Foam Filled with Biomass Incineration Waste Ash. Polymers, 2020, 12, 683.	4.5	36
20	The effects of textile reinforcements on the protective properties of self-healing polymers intended for safety gloves. Textile Reseach Journal, 2020, 90, 1974-1986.	2.2	7
21	Bio-Based Polyurethane Composite Foams with Improved Mechanical, Thermal, and Antibacterial Properties. Materials, 2020, 13, 1108.	2.9	50
22	Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams. Polymer Testing, 2020, 87, 106534.	4.8	79
23	Closed Cell Rigid Polyurethane Foams Based on Low Functionality Polyols: Research of Dimensional Stability and Standardised Performance Properties. Materials, 2020, 13, 1438.	2.9	22
24	Effects of Chemically Treated Eucalyptus Fibers on Mechanical, Thermal and Insulating Properties of Polyurethane Composite Foams. Materials, 2020, 13, 1781.	2.9	36
25	Melamine, silica, and ionic liquid as a novel flame retardant for rigid polyurethane foams with enhanced flame retardancy and mechanical properties. Polymer Testing, 2020, 87, 106511.	4.8	55
26	POSS Compounds as Modifiers for Rigid Polyurethane Foams (Composites). Polymers, 2019, 11, 1092.	4.5	25
27	Composites of Rigid Polyurethane Foams Reinforced with POSS. Polymers, 2019, 11, 336.	4.5	36
28	Composites of rigid polyurethane foams and silica powder filler enhanced with ionic liquid. Polymer Testing, 2019, 75, 12-25.	4.8	45
29	POSS as promoters of self-healing process in silicone composites. Polymer Bulletin, 2019, 76, 3387-3402.	3. 3	15
30	The use of rye, oat and triticale straw as fillers of natural rubber composites. Polymer Bulletin, 2018, 75, 4607-4626.	3.3	22
31	Linseed oil as a natural modifier of rigid polyurethane foams. Industrial Crops and Products, 2018, 115, 40-51.	5.2	60
32	Keratin feathers as a filler for rigid polyurethane foams on the basis of soybean oil polyol. Polymer Testing, 2018, 72, 32-45.	4.8	61
33	Rigid polyurethane foams reinforced with solid waste generated in leather industry. Polymer Testing, 2018, 69, 225-237.	4.8	65
34	Evaluation of the Elastomeric Composite Self-repair Process for the Construction of Protective Gloves. Fibres and Textiles in Eastern Europe, 2018, 26, 104-110.	0.5	2
35	Effect of Accelerated Curing Conditions on Shear Strength and Glass Transition Temperature of Epoxy Adhesives. Procedia Engineering, 2017, 193, 423-430.	1.2	11
36	Magnetic (ethylene-octene) elastomer composites obtained by extrusion. Polymer Engineering and Science, 2017, 57, 520-527.	3.1	4

#	Article	IF	CITATIONS
37	Polymer substrates for flexible photovoltaic cells application in personal electronic system. Opto-electronics Review, 2016, 24, .	2.4	10
38	Effect of ionic liquids on the selected properties of magnetic composites filled with micro-sized iron oxide (Fe3O4). Polimery, 2016, 61, 117-124.	0.7	3
39	Surface modification of methylvinylsilicone rubber vulcanizates with polyhedral oligomeric silsesquioxanes functionalized using chloride groups (POSS-Cl). Polimery, 2016, 61, 272-278.	0.7	1
40	POSS compounds as modifiers and additives for elastomeric composites. Polimery, 2013, 58, 772-782.	0.7	7
41	Effect of Ionic Liquids on the Mechanical Properties of Methylvinylsilicone Rubber., 2011,, 151-154.		O
42	Properties of POSS/HNBR Elastomer Nanocomposites. Materials Science Forum, 0, 714, 175-181.	0.3	2
43	Silsesquioxanes as Modifying Agents of Methylvinylsilicone Rubber. Materials Science Forum, 0, 714, 183-189.	0.3	1