## Anna StrÄkowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1446620/publications.pdf Version: 2024-02-01



ΔΝΝΑ ΣΤΡΆ ΚΟΝΑΚΚΑ

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams. Polymer Testing, 2020, 87, 106534.                              | 2.3 | 79        |
| 2  | Rigid polyurethane foams reinforced with solid waste generated in leather industry. Polymer Testing, 2018, 69, 225-237.                                                                   | 2.3 | 65        |
| 3  | Keratin feathers as a filler for rigid polyurethane foams on the basis of soybean oil polyol. Polymer<br>Testing, 2018, 72, 32-45.                                                        | 2.3 | 61        |
| 4  | Linseed oil as a natural modifier of rigid polyurethane foams. Industrial Crops and Products, 2018, 115, 40-51.                                                                           | 2.5 | 60        |
| 5  | Melamine, silica, and ionic liquid as a novel flame retardant for rigid polyurethane foams with enhanced flame retardancy and mechanical properties. Polymer Testing, 2020, 87, 106511.   | 2.3 | 55        |
| 6  | Nutmeg filler as a natural compound for the production of polyurethane composite foams with antibacterial and anti-aging properties. Polymer Testing, 2020, 86, 106479.                   | 2.3 | 52        |
| 7  | Bio-Based Polyurethane Composite Foams with Improved Mechanical, Thermal, and Antibacterial<br>Properties. Materials, 2020, 13, 1108.                                                     | 1.3 | 50        |
| 8  | Composites of rigid polyurethane foams and silica powder filler enhanced with ionic liquid. Polymer<br>Testing, 2019, 75, 12-25.                                                          | 2.3 | 45        |
| 9  | Composites of Rigid Polyurethane Foams Reinforced with POSS. Polymers, 2019, 11, 336.                                                                                                     | 2.0 | 36        |
| 10 | Fire Suppression and Thermal Behavior of Biobased Rigid Polyurethane Foam Filled with Biomass<br>Incineration Waste Ash. Polymers, 2020, 12, 683.                                         | 2.0 | 36        |
| 11 | Effects of Chemically Treated Eucalyptus Fibers on Mechanical, Thermal and Insulating Properties of<br>Polyurethane Composite Foams. Materials, 2020, 13, 1781.                           | 1.3 | 36        |
| 12 | POSS Compounds as Modifiers for Rigid Polyurethane Foams (Composites). Polymers, 2019, 11, 1092.                                                                                          | 2.0 | 25        |
| 13 | Application of Walnut Shells-Derived Biopolyol in the Synthesis of Rigid Polyurethane Foams.<br>Materials, 2020, 13, 2687.                                                                | 1.3 | 25        |
| 14 | The Impact of Hemp Shives Impregnated with Selected Plant Oils on Mechanical, Thermal, and<br>Insulating Properties of Polyurethane Composite Foams. Materials, 2020, 13, 4709.           | 1.3 | 24        |
| 15 | Polyurethane Hybrid Composites Reinforced with Lavender Residue Functionalized with Kaolinite and<br>Hydroxyapatite. Materials, 2021, 14, 415.                                            | 1.3 | 23        |
| 16 | The use of rye, oat and triticale straw as fillers of natural rubber composites. Polymer Bulletin, 2018,<br>75, 4607-4626.                                                                | 1.7 | 22        |
| 17 | Closed Cell Rigid Polyurethane Foams Based on Low Functionality Polyols: Research of Dimensional Stability and Standardised Performance Properties. Materials, 2020, 13, 1438.            | 1.3 | 22        |
| 18 | Mechanically Strong Polyurethane Composites Reinforced with Montmorillonite-Modified Sage Filler<br>(Salvia officinalis L.). International Journal of Molecular Sciences, 2021, 22, 3744. | 1.8 | 22        |

Anna StrÄ...kowska

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | New Flame Retardant Systems Based on Expanded Graphite for Rigid Polyurethane Foams. Applied<br>Sciences (Switzerland), 2020, 10, 5817.                                                                                   | 1.3 | 21        |
| 20 | Rigid Polyurethane Foams Based on Bio-Polyol and Additionally Reinforced with Silanized and<br>Acetylated Walnut Shells for the Synthesis of Environmentally Friendly Insulating Materials.<br>Materials, 2020, 13, 3245. | 1.3 | 20        |
| 21 | Rigid Polyurethane Foams Reinforced with POSS-Impregnated Sugar Beet Pulp Filler. Materials, 2020, 13, 5493.                                                                                                              | 1.3 | 19        |
| 22 | Polyurethane Composites Reinforced with Walnut Shell Filler Treated with Perlite, Montmorillonite and Halloysite. International Journal of Molecular Sciences, 2021, 22, 7304.                                            | 1.8 | 17        |
| 23 | POSS as promoters of self-healing process in silicone composites. Polymer Bulletin, 2019, 76, 3387-3402.                                                                                                                  | 1.7 | 15        |
| 24 | Vermiculite Filler Modified with Casein, Chitosan, and Potato Protein as a Flame Retardant for<br>Polyurethane Foams. International Journal of Molecular Sciences, 2021, 22, 10825.                                       | 1.8 | 15        |
| 25 | Biobased Polyurethane Composite Foams Reinforced with Plum Stones and Silanized Plum Stones.<br>International Journal of Molecular Sciences, 2021, 22, 4757.                                                              | 1.8 | 14        |
| 26 | Coir Fibers Treated with Henna as a Potential Reinforcing Filler in the Synthesis of Polyurethane<br>Composites. Materials, 2021, 14, 1128.                                                                               | 1.3 | 13        |
| 27 | Casein/Apricot Filler in the Production of Flame-Retardant Polyurethane Composites. Materials, 2021, 14, 3620.                                                                                                            | 1.3 | 13        |
| 28 | Effects of Physical and Chemical Modification of Sunflower Cake on Polyurethane Composite Foam<br>Properties. Materials, 2021, 14, 1414.                                                                                  | 1.3 | 12        |
| 29 | Bio-Based Rigid Polyurethane Foam Composites Reinforced with Bleached Curauá Fiber. International<br>Journal of Molecular Sciences, 2021, 22, 11203.                                                                      | 1.8 | 12        |
| 30 | Effect of Accelerated Curing Conditions on Shear Strength and Glass Transition Temperature of Epoxy Adhesives. Procedia Engineering, 2017, 193, 423-430.                                                                  | 1.2 | 11        |
| 31 | Polymer substrates for flexible photovoltaic cells application in personal electronic system.<br>Opto-electronics Review, 2016, 24, .                                                                                     | 2.4 | 10        |
| 32 | Chlorine-Functional Silsesquioxanes (POSS-Cl) as Effective Flame Retardants and Reinforcing<br>Additives for Rigid Polyurethane Foams. Molecules, 2021, 26, 3979.                                                         | 1.7 | 10        |
| 33 | The effects of textile reinforcements on the protective properties of self-healing polymers intended for safety gloves. Textile Reseach Journal, 2020, 90, 1974-1986.                                                     | 1.1 | 7         |
| 34 | POSS compounds as modifiers and additives for elastomeric composites. Polimery, 2013, 58, 772-782.                                                                                                                        | 0.4 | 7         |
| 35 | Magnetic (ethylene-octene) elastomer composites obtained by extrusion. Polymer Engineering and Science, 2017, 57, 520-527.                                                                                                | 1.5 | 4         |
| 36 | Effect of ionic liquids on the selected properties of magnetic composites filled with micro-sized iron oxide (Fe3O4). Polimery, 2016, 61, 117-124.                                                                        | 0.4 | 3         |

Anna StrÄ...kowska

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Properties of POSS/HNBR Elastomer Nanocomposites. Materials Science Forum, 0, 714, 175-181.                                                                                             | 0.3 | 2         |
| 38 | Mechanical and Electrical Performance of Flexible Polymer Film Designed for a Textile Electrically-Conductive Path. Materials, 2021, 14, 2169.                                          | 1.3 | 2         |
| 39 | Evaluation of the Elastomeric Composite Self-repair Process for the Construction of Protective Gloves. Fibres and Textiles in Eastern Europe, 2018, 26, 104-110.                        | 0.2 | 2         |
| 40 | Silsesquioxanes as Modifying Agents of Methylvinylsilicone Rubber. Materials Science Forum, 0, 714, 183-189.                                                                            | 0.3 | 1         |
| 41 | Surface modification of methylvinylsilicone rubber vulcanizates with polyhedral oligomeric silsesquioxanes functionalized using chloride groups (POSS-Cl). Polimery, 2016, 61, 272-278. | 0.4 | 1         |
| 42 | Bio-based Foam Insulation. Green Energy and Technology, 2022, , 177-216.                                                                                                                | 0.4 | 1         |
| 43 | Effect of Ionic Liquids on the Mechanical Properties of Methylvinylsilicone Rubber. , 2011, , 151-154.                                                                                  |     | 0         |