Joseph N S Eisenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1446288/publications.pdf Version: 2024-02-01

101	4 71 0	76196	118652
121	4,/10	40	62
papers	citations	h-index	g-index
100	100	100	
123	123	123	556/
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Do U.S. Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis Environmental Health Perspectives, 2003, 111, 1102-1109.	2.8	360
2	Seasonality of rotavirus disease in the tropics: a systematic review and meta-analysis. International Journal of Epidemiology, 2009, 38, 1487-1496.	0.9	227
3	Heavy Rainfall Events and Diarrhea Incidence: The Role of Social and Environmental Factors. American Journal of Epidemiology, 2014, 179, 344-352.	1.6	145
4	Retail Meat Consumption and the Acquisition of Antimicrobial Resistant <i>Escherichia coli</i> Causing Urinary Tract Infections: A Case–Control Study. Foodborne Pathogens and Disease, 2007, 4, 419-431.	0.8	129
5	Epidemiology of the silent polio outbreak in Rahat, Israel, based on modeling of environmental surveillance data. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10625-E10633.	3.3	126
6	Environmental Determinants of Infectious Disease: A Framework for Tracking Causal Links and Guiding Public Health Research. Environmental Health Perspectives, 2007, 115, 1216-1223.	2.8	122
7	Environmental change and infectious disease: How new roads affect the transmission of diarrheal pathogens in rural Ecuador. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19460-19465.	3.3	117
8	The joint effects of efficacy and compliance: A study of household water treatment effectiveness against childhood diarrhea. Water Research, 2013, 47, 1181-1190.	5.3	106
9	Integrating Disease Control Strategies: Balancing Water Sanitation and Hygiene Interventions to Reduce Diarrheal Disease Burden. American Journal of Public Health, 2007, 97, 846-852.	1.5	105
10	Dynamics and Control of Infections Transmitted From Person to Person Through the Environment. American Journal of Epidemiology, 2009, 170, 257-265.	1.6	105
11	Characterization of novel VP7, VP4, and VP6 genotypes of a previously untypeable group A rotavirus. Virology, 2009, 385, 58-67.	1.1	105
12	Fomite-mediated transmission as a sufficient pathway: a comparative analysis across three viral pathogens. BMC Infectious Diseases, 2018, 18, 540.	1.3	104
13	Synergistic Effects Between Rotavirus and Coinfecting Pathogens on Diarrheal Disease: Evidence from a Community-based Study in Northwestern Ecuador. American Journal of Epidemiology, 2012, 176, 387-395.	1.6	98
14	Following the Water: A Controlled Study of Drinking Water Storage in Northern Coastal Ecuador. Environmental Health Perspectives, 2008, 116, 1533-1540.	2.8	95
15	Disease transmission models for public health decision making: analysis of epidemic and endemic conditions caused by waterborne pathogens Environmental Health Perspectives, 2002, 110, 783-790.	2.8	83
16	Mathematical models: A key tool for outbreak response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18095-18096.	3.3	78
17	Dose-response relationships for environmentally mediated infectious disease transmission models. PLoS Computational Biology, 2017, 13, e1005481.	1.5	78
18	I get height with a little help from my friends: herd protection from sanitation on child growth in rural Ecuador. International Journal of Epidemiology, 2016, 45, 460-469.	0.9	76

#	Article	IF	CITATIONS
19	Drivers of Water Quality Variability in Northern Coastal Ecuador. Environmental Science & Technology, 2009, 43, 1788-1797.	4.6	67
20	Shared Sanitation and the Prevalence of Diarrhea in Young Children: Evidence from 51 Countries, 2001–2011. American Journal of Tropical Medicine and Hygiene, 2014, 91, 173-180.	0.6	66
21	Herd Protection from Drinking Water, Sanitation, and Hygiene Interventions. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1201-1210.	0.6	64
22	Linking Quantitative Microbial Risk Assessment and Epidemiological Data: Informing Safe Drinking Water Trials in Developing Countries. Environmental Science & Technology, 2012, 46, 5160-5167.	4.6	61
23	Impact of Rainfall on Diarrheal Disease Risk Associated with Unimproved Water and Sanitation. American Journal of Tropical Medicine and Hygiene, 2014, 90, 705-711.	0.6	61
24	Informing Optimal Environmental Influenza Interventions: How the Host, Agent, and Environment Alter Dominant Routes of Transmission. PLoS Computational Biology, 2010, 6, e1000969.	1.5	59
25	Health risks from exposure to untreated wastewater used for irrigation in the Mezquital Valley, Mexico: A 25-year update. Water Research, 2017, 123, 834-850.	5.3	58
26	Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador. MSphere, 2016, 1, .	1.3	57
27	Quantifying pathogen risks associated with potable reuse: A risk assessment case study for Cryptosporidium. Water Research, 2017, 119, 252-266.	5.3	51
28	Social Connectedness and Disease Transmission: Social Organization, Cohesion, Village Context, and Infection Risk in Rural Ecuador. American Journal of Public Health, 2012, 102, 2233-2239.	1.5	50
29	Toward a Systems Approach to Enteric Pathogen Transmission: From Individual Independence to Community Interdependence. Annual Review of Public Health, 2012, 33, 239-257.	7.6	50
30	Are fecal indicator bacteria appropriate measures of recreational water risks in the tropics: A cohort study of beach goers in Brazil?. Water Research, 2015, 87, 59-68.	5.3	50
31	The joint effects of water and sanitation on diarrhoeal disease: a multicountry analysis of the <scp>D</scp> emographic and <scp>H</scp> ealth <scp>S</scp> urveys. Tropical Medicine and International Health, 2015, 20, 284-292.	1.0	48
32	The Role of Disease Transmission and Conferred Immunity in Outbreaks: Analysis of the 1993 Cryptosporidium Outbreak in Milwaukee, Wisconsin. American Journal of Epidemiology, 2005, 161, 62-72.	1.6	47
33	Rethinking Indicators of Microbial Drinking Water Quality for Health Studies in Tropical Developing Countries: Case Study in Northern Coastal Ecuador. American Journal of Tropical Medicine and Hygiene, 2012, 86, 499-507.	0.6	46
34	Modeling Biphasic Environmental Decay of Pathogens and Implications for Risk Analysis. Environmental Science & Technology, 2017, 51, 2186-2196.	4.6	46
35	Microbial Risk Assessment Framework for Exposure to Amended Sludge Projects. Environmental Health Perspectives, 2008, 116, 727-733.	2.8	45
36	A Dynamic Model to Assess Microbial Health Risks Associated with Beneficial Uses of Biosolids. Risk Analysis, 2004, 24, 221-236.	1.5	44

#	Article	IF	CITATIONS
37	Relating Diarrheal Disease to Social Networks and the Geographic Configuration of Communities in Rural Ecuador. American Journal of Epidemiology, 2007, 166, 1088-1095.	1.6	44
38	Identifying Etiological Agents Causing Diarrhea in Low Income Ecuadorian Communities. American Journal of Tropical Medicine and Hygiene, 2014, 91, 563-569.	0.6	43
39	Household effectiveness vs. laboratory efficacy of point-of-use chlorination. Water Research, 2014, 54, 69-77.	5.3	43
40	Small-Scale Food Animal Production and Antimicrobial Resistance: Mountain, Molehill, or Something in-between?. Environmental Health Perspectives, 2017, 125, 104501.	2.8	43
41	An evaluation of parsimony for microbial risk assessment models. Environmetrics, 2008, 19, 61-78.	0.6	41
42	Understanding the Impact of Rainfall on Diarrhea: Testing the Concentration-Dilution Hypothesis Using a Systematic Review and Meta-Analysis. Environmental Health Perspectives, 2020, 128, 126001.	2.8	41
43	Antibiotic Resistome Associated with Small-Scale Poultry Production in Rural Ecuador. Environmental Science & Technology, 2018, 52, 8165-8172.	4.6	40
44	Ebola: Mobility data. Science, 2014, 346, 433-433.	6.0	39
45	The Role of Mobile Genetic Elements in the Spread of Antimicrobial-Resistant Escherichia coli From Chickens to Humans in Small-Scale Production Poultry Operations in Rural Ecuador. American Journal of Epidemiology, 2018, 187, 558-567.	1.6	39
46	Effects of Selection Pressure and Genetic Association on the Relationship between Antibiotic Resistance and Virulence in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2015, 59, 6733-6740.	1.4	38
47	Modeling environmentally mediated rotavirus transmission: The role of temperature and hydrologic factors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2782-E2790.	3.3	38
48	Coaggregation occurs amongst bacteria within and between biofilms in domestic showerheads. Biofouling, 2013, 29, 53-68.	0.8	37
49	Livestock Ownership among Rural Households and Child Morbidity and Mortality: An Analysis of Demographic Health Survey Data from 30 Sub-Saharan African Countries (2005–2015). American Journal of Tropical Medicine and Hygiene, 2017, 96, 16-0664.	0.6	37
50	Decision Tree Method for the Classification of Chemical Pollutants:Â Incorporation of Across-Chemical Variability and Within-Chemical Uncertainty. Environmental Science & Technology, 1998, 32, 3396-3404.	4.6	36
51	The Sonoma Water Evaluation Trial: A Randomized Drinking Water Intervention Trial to Reduce Gastrointestinal Illness in Older Adults. American Journal of Public Health, 2009, 99, 1988-1995.	1.5	35
52	Measuring Environmental Exposure to Enteric Pathogens in Low-Income Settings: Review and Recommendations of an Interdisciplinary Working Group. Environmental Science & Technology, 2020, 54, 11673-11691.	4.6	35
53	Quantitative Microbial Risk Assessment and Infectious Disease Transmission Modeling of Waterborne Enteric Pathogens. Current Environmental Health Reports, 2018, 5, 293-304.	3.2	34
54	The dynamics of methicillin-resistant Staphylococcus aureusexposure in a hospital model and the potential for environmental intervention. BMC Infectious Diseases, 2013, 13, 595.	1.3	33

#	Article	IF	CITATIONS
55	GENERALIST FEEDING BEHAVIORS OFAEDES SIERRENSISLARVAE AND THEIR EFFECTS ON PROTOZOAN POPULATIONS. Ecology, 2000, 81, 921-935.	1.5	32
56	Q Fever Risk Across a Dynamic, Heterogeneous Landscape in Laikipia County, Kenya. EcoHealth, 2014, 11, 429-433.	0.9	31
57	Equivalency of indirect and direct potable reuse paradigms based on a quantitative microbial risk assessment framework. Microbial Risk Analysis, 2019, 12, 60-75.	1.3	29
58	Chemical Dynamics of Persistent Organic Pollutants:Â A Sensitivity Analysis Relating Soil Concentration Levels to Atmospheric Emissions. Environmental Science & Technology, 1998, 32, 115-123.	4.6	28
59	Raising the Level of Analysis of Food-Borne Outbreaks. Epidemiology, 2008, 19, 384-390.	1.2	26
60	Where science meets policy: comparing longitudinal and cross-sectional designs to address diarrhoeal disease burden in the developing world. International Journal of Epidemiology, 2012, 41, 504-513.	0.9	25
61	In-roads to the spread of antibiotic resistance: regional patterns of microbial transmission in northern coastal Ecuador. Journal of the Royal Society Interface, 2012, 9, 1029-1039.	1.5	25
62	A pilot randomized, controlled trial of an in-home drinking water intervention among HIV+ persons. Journal of Water and Health, 2005, 3, 173-184.	1.1	22
63	Spatial Variability of Escherichia coli in Rivers of Northern Coastal Ecuador. Water (Switzerland), 2015, 7, 818-832.	1.2	22
64	The seroâ€epidemiology of <i>Coxiella burnetii</i> (Q fever) across livestock species and herding contexts in Laikipia County, Kenya. Zoonoses and Public Health, 2019, 66, 316-324.	0.9	22
65	Systems Science Approaches for Global Environmental Health Research: Enhancing Intervention Design and Implementation for Household Air Pollution (HAP) and Water, Sanitation, and Hygiene (WASH) Programs. Environmental Health Perspectives, 2020, 128, 105001.	2.8	22
66	Bias due to Secondary Transmission in Estimation of Attributable Risk From Intervention Trials. Epidemiology, 2003, 14, 442-450.	1.2	21
67	Symptomatic and Subclinical Infection with Rotavirus P[8]C9, Rural Ecuador. Emerging Infectious Diseases, 2007, 13, 574-580.	2.0	21
68	High Prevalence of Extended-Spectrum Beta-Lactamase CTX-M–Producing Escherichia coli in Small-Scale Poultry Farming in Rural Ecuador. American Journal of Tropical Medicine and Hygiene, 2019, 100, 374-376.	0.6	20
69	Inferences Drawn from a Risk Assessment Compared Directly with a RandomizedTrial of a Home Drinking Water Intervention. Environmental Health Perspectives, 2006, 114, 1199-1204.	2.8	19
70	Successes and Shortcomings of Polio Eradication: A Transmission Modeling Analysis. American Journal of Epidemiology, 2013, 177, 1236-1245.	1.6	19
71	Reduced infectivity of waterborne viable but nonculturable <i>Helicobacter pylori</i> strain <scp>SS</scp> 1 in mice. Helicobacter, 2017, 22, e12391.	1.6	18
72	Transition in the Cause of Fever from Malaria to Dengue, Northwestern Ecuador, 1990–2011. Emerging Infectious Diseases, 2013, 19, 1642-1645.	2.0	17

#	Article	IF	CITATIONS
73	Spatiotemporal Error in Rainfall Data: Consequences for Epidemiologic Analysis of Waterborne Diseases. American Journal of Epidemiology, 2019, 188, 950-959.	1.6	17
74	Rapid changes in rotaviral genotypes in Ecuador. Journal of Medical Virology, 2009, 81, 2109-2113.	2.5	15
75	Moving towards transformational WASH. The Lancet Global Health, 2019, 7, e1492.	2.9	14
76	Determinants of Latrine Use Behavior: The Psychosocial Proxies of Individual-Level Defecation Practices in Rural Coastal Ecuador. American Journal of Tropical Medicine and Hygiene, 2019, 100, 733-741.	0.6	14
77	Household coping strategies associated with unreliable water supplies and diarrhea in Ecuador, an upper-middle-income country. Water Research, 2020, 170, 115269.	5.3	12
78	Does Basic Sanitation Prevent Diarrhea? Contextualizing Recent Intervention Trials through a Historical Lens. International Journal of Environmental Research and Public Health, 2020, 17, 230.	1.2	12
79	The Critical Role of Compliance in Delivering Health Gains from Environmental Health Interventions. American Journal of Tropical Medicine and Hygiene, 2019, 100, 777-779.	0.6	12
80	An urban-to-rural continuum of malaria risk: new analytic approaches characterize patterns in Malawi. Malaria Journal, 2021, 20, 418.	0.8	12
81	Ask When—Not Just Whether—It's a Risk: How Regional Context Influences Local Causes of Diarrheal Disease. American Journal of Epidemiology, 2014, 179, 1247-1254.	1.6	11
82	Determinants of Short-term Movement in a Developing Region and Implications for Disease Transmission. Epidemiology, 2018, 29, 117-125.	1.2	11
83	A dynamic quantitative microbial risk assessment for norovirus in potable reuse systems. Microbial Risk Analysis, 2020, 14, 100088.	1.3	11
84	A dengue outbreak in a rural community in Northern Coastal Ecuador: An analysis using unmanned aerial vehicle mapping. PLoS Neglected Tropical Diseases, 2021, 15, e0009679.	1.3	11
85	A pilot randomized, controlled trial of an in-home drinking water intervention among HIV + persons. Journal of Water and Health, 2005, 3, 173-84.	1.1	11
86	What is Global Health Equity? A Proposed Definition. Annals of Global Health, 2022, 88, .	0.8	11
87	The Water Quality in Rio Highlights the Global Public Health Concern Over Untreated Sewage. Environmental Health Perspectives, 2016, 124, A180-A181.	2.8	10
88	Social cohesion and passive adaptation in relation to climate change and disease. Global Environmental Change, 2019, 58, 101960.	3.6	9
89	Immunologic and Epidemiologic Drivers of Norovirus Transmission in Daycare and School Outbreaks. Epidemiology, 2021, 32, 351-359.	1.2	9
90	Unexpected distribution of the fluoroquinolone-resistance gene qnrB in Escherichia coli isolates from different human and poultry origins in Ecuador. International Microbiology, 2015, 18, 85-90.	1.1	9

#	Article	lF	CITATIONS
91	Distribution of Enteroinvasive and Enterotoxigenic Escherichia coli Across Space and Time in Northwestern Ecuador. American Journal of Tropical Medicine and Hygiene, 2016, 94, 276-284.	0.6	8
92	Trends of child undernutrition in rural Ecuadorian communities with differential access to roads, 2004–2013. Maternal and Child Nutrition, 2018, 14, e12588.	1.4	8
93	Linking Decision Theory and Quantitative Microbial Risk Assessment: Tradeoffs Between Compliance and Efficacy for Waterborne Disease Interventions. Risk Analysis, 2019, 39, 2214-2226.	1.5	8
94	Phenotypic variations in persistence and infectivity between and within environmentally transmitted pathogen populations impact population-level epidemic dynamics. BMC Infectious Diseases, 2019, 19, 449.	1.3	8
95	A critical analysis of recreational water guidelines developed from temperate climate data and applied to the tropics. Water Research, 2020, 170, 115294.	5.3	8
96	Perceptions of Local Vulnerability and the Relative Importance of Climate Change in Rural Ecuador. Human Ecology, 2020, 48, 383-395.	0.7	8
97	Associations between livestock ownership and lower odds of anaemia among children 6–59 months old are not mediated by animalâ€source food consumption in Ghana. Maternal and Child Nutrition, 2021, 17, e13163.	1.4	8
98	The role of time-varying viral shedding in modelling environmental surveillance for public health: revisiting the 2013 poliovirus outbreak in Israel. Journal of the Royal Society Interface, 2022, 19, 20220006.	1.5	8
99	A space-time point process model for analyzing and predicting case patterns of diarrheal disease in northwestern Ecuador. Spatial and Spatio-temporal Epidemiology, 2014, 9, 23-35.	0.9	7
100	Mass Gatherings and Diarrheal Disease Transmission Among Rural Communities in Coastal Ecuador. American Journal of Epidemiology, 2019, 188, 1475-1483.	1.6	7
101	The Impact of Vaccination Efforts on the Spatiotemporal Patterns of the Hepatitis A Outbreak in Michigan, 2016–2018. Epidemiology, 2020, 31, 628-635.	1.2	7
102	Modeling Spatial Risk of Diarrheal Disease Associated with Household Proximity to Untreated Wastewater Used for Irrigation in the Mezquital Valley, Mexico. Environmental Health Perspectives, 2020, 128, 77002.	2.8	7
103	Spatial Exposure of Agricultural Antimicrobial Resistance in Relation to Free-Ranging Domestic Chicken Movement Patterns among Agricultural Communities in Ecuador. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1803-1809.	0.6	7
104	Gut microbiome, enteric infections and child growth across a rural–urban gradient: protocol for the ECoMiD prospective cohort study. BMJ Open, 2021, 11, e046241.	0.8	7
105	Low-Cost Intervention to Increase Influenza Vaccination Rate at a Comprehensive Cancer Center. Journal of Cancer Education, 2017, 32, 871-877.	0.6	6
106	Determinants of Childhood Zoonotic Enteric Infections in a Semirural Community of Quito, Ecuador. American Journal of Tropical Medicine and Hygiene, 2020, 102, 1269-1278.	0.6	6
107	Protecting the Herd from H1N1. Science, 2009, 326, 934-934.	6.0	5
108	Effect of childhood rotavirus vaccination on community rotavirus prevalence in rural Ecuador, 2008-13. International Journal of Epidemiology, 2020, 49, 1691-1701.	0.9	5

#	Article	IF	CITATIONS
109	Ruminant-Related Risk Factors are Associated with Shiga Toxin–Producing Escherichia coli Infection in Children in Southern Ghana. American Journal of Tropical Medicine and Hygiene, 2022, 106, 513-522.	0.6	5
110	Countering the Curse of Dimensionality. Epidemiology, 2019, 30, 609-614.	1.2	4
111	Determinants of Pathogen Contamination of the Environment in the Greater Yangon Area, Myanmar. Environmental Science & Technology, 2021, 55, 16465-16476.	4.6	4
112	Multiple burdens of malnutrition and relative remoteness in rural Ecuadorian communities. Public Health Nutrition, 2021, 24, 4591-4602.	1.1	3
113	Shared water facilities and risk of COVID-19 in resource-poor settings: A transmission modelling study. , 2022, 1, e0000011.		3
114	COLFORD ET AL. RESPOND. American Journal of Public Health, 2010, 100, 1558-1559.	1.5	2
115	A Dynamic Model to Quantify Pathogen Loadings from Combined Sewer Overflows Suitable for River Basin Scale Exposure Assessments. Water Quality, Exposure, and Health, 2014, 5, 163-172.	1.5	2
116	Characterizing Behaviors Associated with Enteric Pathogen Exposure among Infants in Rural Ecuador through Structured Observations. American Journal of Tropical Medicine and Hygiene, 2022, 106, 1747-1756.	0.6	2
117	The importance of community during rapid development: The influence of social networks on acute gastrointestinal illness in rural Ecuador. SSM - Population Health, 2022, 19, 101159.	1.3	1
118	Author's responses to the comment by Daniele Lantagne on "Household effectiveness vs. laboratory efficacy of point-of-use chlorination― Water Research, 2015, 69, 331-333.	5.3	0
119	The Statewide Economic Impact of Child Care–Associated Viral Acute Gastroenteritis Infections. Journal of the Pediatric Infectious Diseases Society, 2021, 10, 847-855.	0.6	О
120	Risk Factors for Infant Feeding Practices Along a Rural-Urban Gradient in Coastal Esmeraldas Province, Ecuador. Current Developments in Nutrition, 2021, 5, 824.	0.1	0
121	"Chicken dumpingâ€: Motivations and perceptions in shifting poultry production practices. One Health, 2021, 13, 100296.	1.5	ο