Dongdong Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/144597/publications.pdf

Version: 2024-02-01

840776 713466 27 439 11 21 citations h-index g-index papers 27 27 27 543 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Microstructure and Electrochemical Behavior of a 3D-Printed Ti-6Al-4V Alloy. Materials, 2022, 15, 4473.	2.9	4
2	Properties of CuGa2 Formed Between Liquid Ga and Cu Substrates at Room Temperature. Journal of Electronic Materials, 2020, 49, 128-139.	2.2	29
3	Electrochemically enhanced Cu6Sn5 anodes with tailored crystal orientation and ordered atomic arrangements for lithium-ion battery applications. Acta Materialia, 2020, 201, 341-349.	7.9	5
4	Cuboid-like nanostructure strengthened equiatomic Ti–Zr–Nb–Ta medium entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140169.	5.6	32
5	On the distribution of the trace elements V and Cr in an Al–Zn–Si alloy coating on a steel substrate. Materialia, 2020, 11, 100669.	2.7	2
6	Reducing Cracking in Solder Joint Interfacial Cu ₆ Sn ₅ with Modified Reflow Profile. Transactions of the Japan Institute of Electronics Packaging, 2020, 13, E19-004-1-E19-004-11.	0.4	4
7	Intermetallic formation mechanisms and properties in room-temperature Ga soldering. Journal of Alloys and Compounds, 2020, 826, 154221.	5.5	17
8	Effects of Ni and Cu Antisite Substitution on the Phase Stability of CuGa2 from Liquid Ga/Cu–Ni Interfacial Reaction. ACS Applied Materials & Interfaces, 2019, 11, 32523-32532.	8.0	10
9	Inhibition of cracking in Cu6Sn5 intermetallic compounds at the interface of lead-free solder joint by controlling the reflow cooling conditions. , 2019, , .		1
10	Effect of Deposition Parameters on Microstructure of the Ti-Mg Immiscible Alloy Thin Film Deposited by Multi-Arc Ion Plating. Metals, 2019, 9, 1229.	2.3	2
11	Pressureâ€induced polyamorphism in lanthanideâ€solute metallic glasses. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700078.	2.4	4
12	Pressureâ€induced polyamorphism in lanthanideâ€solute metallic glasses (Phys. Status Solidi RRL 6/2017). Physica Status Solidi - Rapid Research Letters, 2017, 11, 1770332.	2.4	O
13	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mit"> <mmi:mrow><mmi:mi mathvariant="normal">T</mmi:mi><mmi:msub><mmi:mi mathvariant="normal">i</mmi:mi><mmi:mn>62</mmi:mn></mmi:msub><mmi:mi mathvariant="normal">C</mmi:mi><mmi:msub><mmi:mi< td=""><td>3.2</td><td>8</td></mmi:mi<></mmi:msub></mmi:mrow>	3.2	8
14	A metric to gauge local distortion in metallic glasses and supercooled liquids. Acta Materialia, 2014, 72, 229-238.	7.9	9
15	Structural origins for the high plasticity of a Zr–Cu–Ni–Al bulk metallic glass. Acta Materialia, 2013, 61, 321-330.	7.9	25
16	Variability of Poisson's Ratio and Enhanced Ductility in Amorphous Metal. Advanced Engineering Materials, 2013, 15, 347-351.	3.5	11
17	Undercooling behavior of Zr–Cu–Ni–Al bulk metallic glasses investigated by in situ synchrotron high energy X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 555, 36-43.	5.6	7
18	Introducing a strain-hardening capability to improve the ductility of bulk metallic glasses via severe plastic deformation. Acta Materialia, 2012, 60, 253-260.	7.9	72

#	Article	lF	CITATIONS
19	Shear bands in a bulk metallic glass after large plastic deformation. Scripta Materialia, 2012, 67, 332-335.	5.2	13
20	Super-high compressive plastic deformation behaviors of Zr-based metallic glass at room temperature. Materials Science & Description (2012, 541, 199-203). Processing, 2012, 541, 199-203.	5.6	11
21	On the Atomic Anisotropy of Thermal Expansion in Bulk Metallic Glass. Advanced Engineering Materials, 2011, 13, 861-864.	3.5	17
22	New Approaches to the Computer Simulation of Amorphous Alloys: A Review. Materials, 2011, 4, 716-781.	2.9	14
23	Inhomogeneous structure and glass-forming ability in Zr-based bulk metallic glasses. Journal of Non-Crystalline Solids, 2010, 356, 39-45.	3.1	13
24	MECHANICAL PROPERTY OF A NEW Zr -BASED BULK METALLIC GLASS WITH CERTAIN PLASTICITY AT LOW TEMPERATURE. International Journal of Modern Physics B, 2009, 23, 1331-1336.	2.0	4
25	Zr–Cu–Ni–Al bulk metallic glasses with superhigh glass-forming ability. Acta Materialia, 2009, 57, 1290-1299.	7.9	118
26	The Interaction of Sn-Ga Alloys and Au Coated Cu Substrates. Solid State Phenomena, 0, 273, 3-8.	0.3	6
27	Effect of Trace Elements on the Liquid Structure of Sn-Cu Alloys Investigated by High Energy X-Ray Diffraction. Solid State Phenomena, 0, 273, 101-106.	0.3	1