Francisco Dean Toste

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1445809/francisco-dean-toste-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

362	41,318 citations	125	193
papers		h-index	g-index
523 ext. papers	45,447 ext. citations	14.6 avg, IF	8.08 L-index

#	Paper	IF	Citations
362	Photo-Brook rearrangement of acyl silanes as a strategy for photoaffinity probe design <i>Chemical Science</i> , 2022 , 13, 3851-3856	9.4	5
361	Cooperative Stereoinduction in Asymmetric Photocatalysis <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	3
3 60	Revisiting the Bonding Model for Gold(I) Species: The Importance of Pauli Repulsion Revealed in a Gold(I)-Cyclobutadiene Complex <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	3
359	ASYMMETRIC PHASE-TRANSFER AND ION-PAIR ORGANOCATALYSES 2022 , 117-156		
358	Backbone-Photodegradable Polymers by Incorporating Acylsilane Monomers via Ring-Opening Metathesis Polymerization. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17920-17925	16.4	6
357	The interface is a tunable dimension in electricity-driven organic synthesis. <i>Natural Sciences</i> , 2021 , 1, e20210036		2
356	Controlled Single-Electron Transfer via Metal-Ligand Cooperativity Drives Divergent Nickel-Electrocatalyzed Radical Pathways. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6990-70	00 ^{16.4}	11
355	A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid OH bond insertion. <i>Nature Catalysis</i> , 2021 , 4, 523-531	36.5	28
354	CO reduction on pure Cu produces only H after subsurface O is depleted: Theory and experiment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	11
353	Site-Independent Hydrogenation Reactions on Oxide-Supported Au Nanoparticles Facilitated by Intraparticle Hydrogen Atom Diffusion. <i>ACS Catalysis</i> , 2021 , 11, 9875-9884	13.1	2
352	Approaching 100% Selectivity at Low Potential on Ag for Electrochemical CO2 Reduction to CO Using a Surface Additive. <i>ACS Catalysis</i> , 2021 , 11, 9034-9042	13.1	5
351	Staphylococcus aureus Peptide Methionine Sulfoxide Reductases Protect from Human Whole-Blood Killing. <i>Infection and Immunity</i> , 2021 , 89, e0014621	3.7	O
350	Using silyl protecting group to enable post-deposition C-C coupling reactions of alkyne-functionalized N-heterocyclic carbene monolayers on Au surfaces. <i>Chemical Communications</i> , 2021 , 57, 5342-5345	5.8	3
349	Asymmetric Fluorination Reactions 2021 , 241-280		1
348	Zirconium-Redox-Shuttled Cross-Electrophile Coupling of Aromatic and Heteroaromatic Halides. <i>CheM</i> , 2021 , 7, 1963-1974	16.2	2
347	Data Science Meets Physical Organic Chemistry. Accounts of Chemical Research, 2021,	24.3	12
346	Synthesis of -trifluoromethyl amides from carboxylic acids <i>CheM</i> , 2021 , 7, 2245-2255	16.2	2

345	Generation of Axially Chiral Fluoroallenes through a Copper-Catalyzed Enantioselective Efluoride Elimination. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13759-13768	16.4	8
344	Chemoselective and Site-Selective Reductions Catalyzed by a Supramolecular Host and a Pyridine-Borane Cofactor. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2108-2114	16.4	10
343	Beyond Allylic Alkylation: Applications of Trost Chemistry in Complex Molecule Synthesis. <i>Israel Journal of Chemistry</i> , 2021 , 61, 340-366	3.4	2
342	Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14647-14655	16.4	10
341	Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. <i>Angewandte Chemie</i> , 2020 , 132, 14755-14763	3.6	2
340	Enantioselective Allenoate-Claisen Rearrangement Using Chiral Phosphate Catalysts. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6390-6399	16.4	28
339	Site-dependent selectivity in oxidation reactions on single Pt nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 18765-18769	3.6	5
338	Strategies for remote enantiocontrol in chiral gold(iii) complexes applied to catalytic enantioselective [IDiels-Alder reactions. <i>Chemical Science</i> , 2020 , 11, 6450-6456	9.4	21
337	Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 5733-5740	11.5	13
336	Regio- and Enantioselective Bromocyclization of Difluoroalkenes as a Strategy to Access Tetrasubstituted Difluoromethylene-Containing Stereocenters. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8946-8952	16.4	33
335	An isolated water droplet in the aqueous solution of a supramolecular tetrahedral cage. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32954-32961	11.5	8
334	Enantioselective Kinetic Resolution/Desymmetrization of -Quinols: A Case Study in Boronic-Acid-Directed Phosphoric Acid Catalysis. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 295-301	5.6	12
333	A Nanovessel-Catalyzed Three-Component Aza-Darzens Reaction. <i>Journal of the American Chemical Society</i> , 2020 , 142, 733-737	16.4	20
332	An Activity-Based Methionine Bioconjugation Approach To Developing Proximity-Activated Imaging Reporters. <i>ACS Central Science</i> , 2020 , 6, 32-40	16.8	9
331	Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks. <i>CheM</i> , 2020 , 6, 142-152	16.2	19
330	Strong Metal-Adsorbate Interactions Increase the Reactivity and Decrease the Orientational Order of OH-Functionalized N-Heterocyclic Carbene Monolayers. <i>Langmuir</i> , 2020 , 36, 697-703	4	11
329	Electrochemical deposition of N-heterocyclic carbene monolayers on metal surfaces. <i>Nature Communications</i> , 2020 , 11, 5714	17.4	9
328	Advances in supramolecular host-mediated reactivity. <i>Nature Catalysis</i> , 2020 , 3, 969-984	36.5	65

327	Homogeneous Gold Redox Chemistry: Organometallics, Catalysis, and Beyond. <i>Trends in Chemistry</i> , 2020 , 2, 707-720	14.8	51
326	Heterogeneous Supramolecular Catalysis through Immobilization of Anionic ML Assemblies on Cationic Polymers. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19327-19338	16.4	9
325	Catalytic Dynamic Kinetic Resolutions in Tandem to Construct Two-Axis Terphenyl Atropisomers. Journal of the American Chemical Society, 2020 , 142, 16461-16470	16.4	25
324	Site-selective acylation of natural products with BINOL-derived phosphoric acids. <i>ACS Catalysis</i> , 2019 , 9, 9794-9799	13.1	16
323	Supramolecular Host-Selective Activation of Iodoarenes by Encapsulated Organometallics. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1701-1706	16.4	33
322	Measuring ion-pairing and hydration in variable charge supramolecular cages with microwave microfluidics. <i>Communications Chemistry</i> , 2019 , 2,	6.3	6
321	Synthesis of Biomass-Derived Ethers for Use as Fuels and Lubricants. <i>ChemSusChem</i> , 2019 , 12, 2835-285	8 .3	24
320	Disparate Catalytic Scaffolds for Atroposelective Cyclodehydration. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6698-6705	16.4	72
319	A Dinuclear Mechanism Implicated in Controlled Carbene Polymerization. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6473-6478	16.4	18
318	Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO Reduction at Modified Cu Surfaces. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7355-7364	16.4	76
317	Flexible NO -Functionalized N-Heterocyclic Carbene Monolayers on Au (111) Surface. <i>Chemistry - A European Journal</i> , 2019 , 25, 15067-15072	4.8	23
316	Elucidating the Influence of Anchoring Geometry on the Reactivity of NO-Functionalized N-Heterocyclic Carbene Monolayers. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 5099-5104	6.4	19
315	A Supramolecular Strategy for Selective Catalytic Hydrogenation Independent of Remote Chain Length. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11806-11810	16.4	39
314	Enantioselective construction of remote tertiary carbon-fluorine bonds. <i>Nature Chemistry</i> , 2019 , 11, 710	0-17-16	42
313	A Physical Organic Approach to Tuning Reagents for Selective and Stable Methionine Bioconjugation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12657-12662	16.4	33
312	Mechanism and Kinetics of Isobutene Formation from Ethanol and Acetone over ZnxZryOz. <i>ACS Catalysis</i> , 2019 , 9, 10588-10604	13.1	18
311	Catalytic, Enantioselective Fluorination Reactions 2019 , 749-800		
310	Flexible NO -Functionalized N-Heterocyclic Carbene Monolayers on Au(111) Surface. <i>Chemistry - A European Journal</i> , 2019 , 25, 15009	4.8	

309	Asymmetric Synthesis Enabled by Organometallic Complexes. <i>Organometallics</i> , 2019 , 38, 3899-3901	3.8	5
308	Harnessing Noncovalent Interactions in Dual-Catalytic Enantioselective Heck-Matsuda Arylation. Journal of the American Chemical Society, 2019 , 141, 998-1009	16.4	46
307	Mechanism of Photoredox-Initiated C-C and C-N Bond Formation by Arylation of IPrAu(I)-CF and IPrAu(I)-Succinimide. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4308-4315	16.4	34
306	Supported Au Nanoparticles with N-Heterocyclic Carbene Ligands as Active and Stable Heterogeneous Catalysts for Lactonization. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4144-4	1494	73
305	Enantioselective Synthesis of N,S-Acetals by an Oxidative Pummerer-Type Transformation using Phase-Transfer Catalysis. <i>Angewandte Chemie</i> , 2018 , 130, 598-602	3.6	6
304	Foundations and strategies of the construction of hybrid catalysts for optimized performances. <i>Nature Catalysis</i> , 2018 , 1, 318-325	36.5	97
303	Migratory Insertion of Carbenes into Au(III)-C Bonds. <i>Journal of the American Chemical Society</i> , 2018 , 140, 466-474	16.4	25
302	Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. <i>Chemical Reviews</i> , 2018 , 118, 3887-3964	68.1	316
301	Effect of Alcohol Structure on the Kinetics of Etherification and Dehydration over Tungstated Zirconia. <i>ChemSusChem</i> , 2018 , 11, 3104-3111	8.3	20
300	Enantioselective fluorination of homoallylic alcohols enabled by the tuning of non-covalent interactions. <i>Chemical Science</i> , 2018 , 9, 7153-7158	9.4	18
299	Identifying site-dependent reactivity in oxidation reactions on single Pt particles. <i>Chemical Science</i> , 2018 , 9, 6523-6531	9.4	18
298	Gold-Catalyzed Hydrofluorination of Electron-Deficient Alkynes: Stereoselective Synthesis of -Fluoro Michael Acceptors. <i>ACS Catalysis</i> , 2018 , 8, 5947-5951	13.1	40
297	Enantioselective Synthesis of N,S-Acetals by an Oxidative Pummerer-Type Transformation using Phase-Transfer Catalysis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 589-593	16.4	25
296	Selectivity tuning over monometallic and bimetallic dehydrogenation catalysts: effects of support and particle size. <i>Catalysis Science and Technology</i> , 2018 , 8, 314-327	5.5	18
295	Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts. <i>Accounts of Chemical Research</i> , 2018 , 51, 2447-2455	24.3	198
294	Hybrid Biological Themical Approach Offers Flexibility and Reduces the Carbon Footprint of Biobased Plastics, Rubbers, and Fuels. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 14523-14532	8.3	6
293	Deconvoluting the Role of Charge in a Supramolecular Catalyst. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6591-6595	16.4	49
292	Chiral Diaryliodonium Phosphate Enables Light Driven Diastereoselective EC(sp)-H Acetalization. Journal of the American Chemical Society, 2018, 140, 8350-8356	16.4	29

291	High-spatial-resolution mapping of catalytic reactions on single particles. <i>Nature</i> , 2017 , 541, 511-515	50.4	140
290	ABE Condensation over Monometallic Catalysts: Catalyst Characterization and Kinetics. <i>ChemCatChem</i> , 2017 , 9, 677-684	5.2	28
289	The development and mechanistic investigation of a palladium-catalyzed 1,3-arylfluorination of chromenes. <i>Chemical Science</i> , 2017 , 8, 2890-2897	9.4	54
288	Redox-based reagents for chemoselective methionine bioconjugation. <i>Science</i> , 2017 , 355, 597-602	33.3	231
287	Enantioselective Heck-Matsuda Arylations through Chiral Anion Phase-Transfer of Aryl Diazonium Salts. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5806-5811	16.4	45
286	A Comparison of Photocatalytic Activities of Gold Nanoparticles Following Plasmonic and Interband Excitation and a Strategy for Harnessing Interband Hot Carriers for Solution Phase Photocatalysis. <i>ACS Central Science</i> , 2017 , 3, 482-488	16.8	111
285	Uncovering Subtle Ligand Effects of Phosphines Using Gold(I) Catalysis. ACS Catalysis, 2017, 7, 3973-39	78 3.1	55
284	Parametrization of Non-covalent Interactions for Transition State Interrogation Applied to Asymmetric Catalysis. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6803-6806	16.4	69
283	Enantioselective HeckMatsuda Arylations through Chiral Anion Phase-Transfer of Aryl Diazonium Salts. <i>Angewandte Chemie</i> , 2017 , 129, 5900-5905	3.6	10
282	A catalytic fluoride-rebound mechanism for C(sp)-CF bond formation. <i>Science</i> , 2017 , 356, 1272-1276	33.3	64
281	Exploiting non-covalent [Interactions for catalyst design. <i>Nature</i> , 2017 , 543, 637-646	50.4	423
280	Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. <i>Accounts of Chemical Research</i> , 2017 , 50, 609-615	24.3	147
279	New Insights into Aldol Reactions of Methyl Isocyanoacetate Catalyzed by Heterogenized Homogeneous Catalysts. <i>Nano Letters</i> , 2017 , 17, 584-589	11.5	16
278	Hydrogen Gas-Mediated Deoxydehydration/Hydrogenation of Sugar Acids: Catalytic Conversion of Glucarates to Adipates. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14001-14004	16.4	46
277	Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. <i>Angewandte Chemie</i> , 2017 , 129, 14268-14272	3.6	7
276	Mechanism and kinetics of 1-dodecanol etherification over tungstated zirconia. <i>Journal of Catalysis</i> , 2017 , 354, 13-23	7.3	18
275	Parameterization of Acyclic Diaminocarbene Ligands Applied to a Gold(I)-Catalyzed Enantioselective Tandem Rearrangement/Cyclization. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12943-12946	16.4	57
274	Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14080-14084	16.4	23

273	Well-Defined Chiral Gold(III) Complex Catalyzed Direct Enantioconvergent Kinetic Resolution of 1,5-Enynes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11016-11019	16.4	63
272	Mechanistic Investigations of the Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Benzyl Acrylates. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12688-12695	16.4	69
271	Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18084-18092	16.4	110
270	Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts. <i>Accounts of Chemical Research</i> , 2017 , 50, 1894-1901	24.3	94
269	Conformational Selection as the Mechanism of Guest Binding in a Flexible Supramolecular Host. Journal of the American Chemical Society, 2017 , 139, 8013-8021	16.4	74
268	Enantioselective Oxidative Homocoupling and Cross-Coupling of 2-Naphthols Catalyzed by Chiral Iron Phosphate Complexes. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16553-16560	16.4	154
267	Development and Analysis of a Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Acrylates Enabled by Chiral Anion Phase Transfer. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15877-158	80 ^{6.4}	90
266	Scope and Mechanism of Cooperativity at the Intersection of Organometallic and Supramolecular Catalysis. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9682-93	16.4	74
265	Seven Post-synthetic Covalent Reactions in Tandem Leading to Enzyme-like Complexity within Metal-Organic Framework Crystals. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8352-5	16.4	146
264	Metal Nanoparticles Catalyzed Selective Carbon-Carbon Bond Activation in the Liquid Phase. Journal of the American Chemical Society, 2016 , 138, 8533-7	16.4	31
263	Isolation and Reactivity of Trifluoromethyl Iodonium Salts. ACS Central Science, 2016, 2, 341-50	16.8	69
262	Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 2079-87	4.9	11
261	Asymmetric addition of Ebranched cyclic ketones to allenamides catalyzed by a chiral phosphoric acid. <i>Chemical Science</i> , 2016 , 7, 2653-2656	9.4	49
260	Combining microbial production with chemical upgrading. <i>Current Opinion in Biotechnology</i> , 2016 , 38, 47-53	11.4	31
259	Visible light-mediated gold-catalysed carbon(sp)-carbon(sp) cross-coupling. <i>Chemical Science</i> , 2016 , 7, 85-88	9.4	129
258	Recent advances in enantioselective gold catalysis. <i>Chemical Society Reviews</i> , 2016 , 45, 4567-89	58.5	325
257	Enantiodivergent Fluorination of Allylic Alcohols: Data Set Design Reveals Structural Interplay between Achiral Directing Group and Chiral Anion. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3863-75	16.4	89
256	Production of renewable lubricants via self-condensation of methyl ketones. <i>Green Chemistry</i> , 2016 , 18, 3577-3581	10	25

255	Phosphonium Formation by Facile Carbon-Phosphorus Reductive Elimination from Gold(III). <i>Journal of the American Chemical Society</i> , 2016 , 138, 587-93	16.4	71
254	Enantioselective Palladium-Catalyzed Oxidative IFluoroarylation of IJI Insaturated Carbonyl Derivatives. <i>Angewandte Chemie</i> , 2016 , 128, 9191-9195	3.6	15
253	Enantioselective Palladium-Catalyzed Oxidative [Fluoroarylation of [Unsaturated Carbonyl Derivatives. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9045-9	16.4	47
252	Enantioselective, Stereodivergent Hydroazidation and Hydroamination of Allenes Catalyzed by Acyclic Diaminocarbene (ADC) Gold(I) Complexes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6079-83	16.4	65
251	Enantioselective, Stereodivergent Hydroazidation and Hydroamination of Allenes Catalyzed by Acyclic Diaminocarbene (ADC) Gold(I) Complexes. <i>Angewandte Chemie</i> , 2016 , 128, 6183-6187	3.6	17
250	Synergistic Effects in Bimetallic Palladium-Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6805-12	16.4	77
249	Photoredox Catalysis Unlocks Single-Electron Elementary Steps in Transition Metal Catalyzed Cross-Coupling. <i>ACS Central Science</i> , 2016 , 2, 293-301	16.8	164
248	Palladium-Catalyzed Defluorinative Coupling of 1-Aryl-2,2-Difluoroalkenes and Boronic Acids: Stereoselective Synthesis of Monofluorostilbenes. <i>Angewandte Chemie</i> , 2016 , 128, 11801-11804	3.6	40
247	Palladium-Catalyzed Defluorinative Coupling of 1-Aryl-2,2-Difluoroalkenes and Boronic Acids: Stereoselective Synthesis of Monofluorostilbenes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11629-32	16.4	119
246	Gold Catalysis Esteadily Increasing in Importance. Advanced Synthesis and Catalysis, 2016, 358, 1347-134	4 7 5.6	53
245	Biomimetic Approach to the Catalytic Enantioselective Synthesis of Flavonoids. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9775-8	16.4	49
244	Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond. <i>CheM</i> , 2016 , 1, 32-58	16.2	230
243	Stable gold(III) catalysts by oxidative addition of a carbon-carbon bond. <i>Nature</i> , 2015 , 517, 449-54	50.4	217
243	Stable gold(III) catalysts by oxidative addition of a carbon-carbon bond. <i>Nature</i> , 2015 , 517, 449-54 Enantioselective 1,1-arylborylation of alkenes: merging chiral anion phase transfer with Pd catalysis. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3213-3216	50.4	217
	Enantioselective 1,1-arylborylation of alkenes: merging chiral anion phase transfer with Pd		,
242	Enantioselective 1,1-arylborylation of alkenes: merging chiral anion phase transfer with Pd catalysis. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3213-3216 A divergent/convergent approach to dolabriferol: the KornblumDeLaMare enantiomeric	16.4	123
242	Enantioselective 1,1-arylborylation of alkenes: merging chiral anion phase transfer with Pd catalysis. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3213-3216 A divergent/convergent approach to dolabriferol: the KornblumDeLaMare enantiomeric resolution. <i>Tetrahedron Letters</i> , 2015 , 56, 3643-3646 Gold(I)-catalyzed dearomative Rautenstrauch rearrangement: enantioselective access to	16.4	123

(2015-2015)

237	Supramolecular catalysis in metal-ligand cluster hosts. <i>Chemical Reviews</i> , 2015 , 115, 3012-35	68.1	829
236	Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel. <i>ChemSusChem</i> , 2015 , 8, 1726-36	8.3	90
235	Direct asymmetric amination of Branched cyclic ketones catalyzed by a chiral phosphoric acid. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3205-8	16.4	109
234	Supramolecular Ga4L6(12-) Cage Photosensitizes 1,3-Rearrangement of Encapsulated Guest via Photoinduced Electron Transfer. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10128-31	16.4	69
233	Palladium-catalyzed enantioselective 1,1-fluoroarylation of aminoalkenes. <i>Journal of the American Chemical Society</i> , 2015 , 137, 12207-10	16.4	80
232	Protein-like proton exchange in a synthetic host cavity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 15303-7	11.5	12
231	The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations. <i>Chemical Science</i> , 2015 , 6, 1383-1393	9.4	54
230	Polymer-Encapsulated Metallic Nanoparticles as a Bridge Between Homogeneous and Heterogeneous Catalysis. <i>Catalysis Letters</i> , 2015 , 145, 126-138	2.8	53
229	A dual catalytic strategy for carbon-phosphorus cross-coupling via gold and photoredox catalysis. <i>Chemical Science</i> , 2015 , 6, 1194-1198	9.4	166
	Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and		
228	trifluoromethylthiolation reactions. <i>Chemical Reviews</i> , 2015 , 115, 826-70	68.1	938
228		13.1	938
	Enantioselective Synthesis of Fluoro-Dihydroquinazolones and -Benzooxazinones by		
227	Enantioselective Synthesis of Fluoro-Dihydroquinazolones and -Benzooxazinones by Fluorination-Initiated Asymmetric Cyclization Reactions. <i>ACS Catalysis</i> , 2015 , 6, 151-154 Catalytic Upgrading of Biomass-Derived Methyl Ketones to Liquid Transportation Fuel Precursors	13.1	32
227	Enantioselective Synthesis of Fluoro-Dihydroquinazolones and -Benzooxazinones by Fluorination-Initiated Asymmetric Cyclization Reactions. <i>ACS Catalysis</i> , 2015 , 6, 151-154 Catalytic Upgrading of Biomass-Derived Methyl Ketones to Liquid Transportation Fuel Precursors by an Organocatalytic Approach. <i>Angewandte Chemie</i> , 2015 , 127, 4756-4760 Gold(I)-Catalyzed Enantioselective Desymmetrization of 1,3-Diols through Intramolecular	13.1 3.6	3 ²
227 226 225	Enantioselective Synthesis of Fluoro-Dihydroquinazolones and -Benzooxazinones by Fluorination-Initiated Asymmetric Cyclization Reactions. <i>ACS Catalysis</i> , 2015 , 6, 151-154 Catalytic Upgrading of Biomass-Derived Methyl Ketones to Liquid Transportation Fuel Precursors by an Organocatalytic Approach. <i>Angewandte Chemie</i> , 2015 , 127, 4756-4760 Gold(I)-Catalyzed Enantioselective Desymmetrization of 1,3-Diols through Intramolecular Hydroalkoxylation of Allenes. <i>Angewandte Chemie</i> , 2015 , 127, 14655-14659 Gold(I)-Catalyzed Desymmetrization of 1,4-Dienes by an Enantioselective Tandem	3.6 3.6	32 9 13
227 226 225	Enantioselective Synthesis of Fluoro-Dihydroquinazolones and -Benzooxazinones by Fluorination-Initiated Asymmetric Cyclization Reactions. <i>ACS Catalysis</i> , 2015 , 6, 151-154 Catalytic Upgrading of Biomass-Derived Methyl Ketones to Liquid Transportation Fuel Precursors by an Organocatalytic Approach. <i>Angewandte Chemie</i> , 2015 , 127, 4756-4760 Gold(I)-Catalyzed Enantioselective Desymmetrization of 1,3-Diols through Intramolecular Hydroalkoxylation of Allenes. <i>Angewandte Chemie</i> , 2015 , 127, 14655-14659 Gold(I)-Catalyzed Desymmetrization of 1,4-Dienes by an Enantioselective Tandem Alkoxylation/Claisen Rearrangement. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8529-32 Upgrading Lignocellulosic Products to Drop-In Biofuels via Dehydrogenative Cross-Coupling and	3.6 3.6 16.4	32 9 13
227 226 225 224	Enantioselective Synthesis of Fluoro-Dihydroquinazolones and -Benzooxazinones by Fluorination-Initiated Asymmetric Cyclization Reactions. <i>ACS Catalysis</i> , 2015 , 6, 151-154 Catalytic Upgrading of Biomass-Derived Methyl Ketones to Liquid Transportation Fuel Precursors by an Organocatalytic Approach. <i>Angewandte Chemie</i> , 2015 , 127, 4756-4760 Gold(I)-Catalyzed Enantioselective Desymmetrization of 1,3-Diols through Intramolecular Hydroalkoxylation of Allenes. <i>Angewandte Chemie</i> , 2015 , 127, 14655-14659 Gold(I)-Catalyzed Desymmetrization of 1,4-Dienes by an Enantioselective Tandem Alkoxylation/Claisen Rearrangement. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8529-32 Upgrading Lignocellulosic Products to Drop-In Biofuels via Dehydrogenative Cross-Coupling and Hydrodeoxygenation Sequence. <i>ChemSusChem</i> , 2015 , 8, 2609-14 Gold(I)-Catalyzed Desymmetrization of 1,4-Dienes by an Enantioselective Tandem	3.6 3.6 16.4 8.3	32 9 13 49 26

219	Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7645-9	11.5	90
218	Gold(I)-catalyzed enantioselective [3+2] and [3+3] cycloaddition reactions of propargyl acetals/ketals. <i>Tetrahedron</i> , 2015 , 71, 5800-5805	2.4	19
217	Catalytic upgrading of biomass-derived methyl ketones to liquid transportation fuel precursors by an organocatalytic approach. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4673-7	16.4	52
216	Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7083-6	16.4	86
215	A Nucleophilic Strategy for Enantioselective Intermolecular Amination: Access to Enantioenriched Arylamino Ketones. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7632-5	16.4	46
214	A supramolecular microenvironment strategy for transition metal catalysis. <i>Science</i> , 2015 , 350, 1235-8	33.3	291
213	Enantioselective Gold-Catalyzed Synthesis of Heterocyclic Compounds. <i>Topics in Heterocyclic Chemistry</i> , 2015 , 227-248	0.2	4
212	Organic chemistry. A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis. <i>Science</i> , 2015 , 347, 737-43	33.3	148
211	Chiral anion phase transfer of aryldiazonium cations: an enantioselective synthesis of C3-diazenated pyrroloindolines. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5600-3	16.4	83
210	In situ IR and X-ray high spatial-resolution microspectroscopy measurements of multistep organic transformation in flow microreactor catalyzed by Au nanoclusters. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3624-9	16.4	66
209	Application of fundamental organometallic chemistry to the development of a gold-catalyzed synthesis of sulfinate derivatives. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 4404-7	16.4	196
208	Inorganic micelles as efficient and recyclable micellar catalysts. <i>Nano Letters</i> , 2014 , 14, 379-83	11.5	42
207	Gold-catalyzed allylation of aryl boronic acids: accessing cross-coupling reactivity with gold. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 6211-5	16.4	145
206	Exceptionally fast carbon-carbon bond reductive elimination from gold(III). <i>Nature Chemistry</i> , 2014 , 6, 159-64	17.6	171
205	Development of catalysts and ligands for enantioselective gold catalysis. <i>Accounts of Chemical Research</i> , 2014 , 47, 889-901	24.3	395
204	GOLD CATALYSIS IN NATURAL PRODUCT SYNTHESIS. Catalytic Science Series, 2014 , 501-536	0.4	2
203	Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors. <i>Metabolic Engineering</i> , 2014 , 25, 124-30	9.7	29
202	Synthesis of Stable Gold(III) Pincer Complexes with Anionic Heteroatom Donors. <i>Organometallics</i> , 2014 , 33, 4169-4172	3.8	22

2	201	Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. <i>Journal of the American Chemical Society</i> , 2014 , 136, 14409-12	16.4	93
2	2 00	An in situ directing group strategy for chiral anion phase-transfer fluorination of allylic alcohols. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12864-7	16.4	98
	199	Photoinitiated oxidative addition of CF3I to gold(I) and facile aryl-CF3 reductive elimination. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7777-82	16.4	119
	198	Asymmetric palladium-catalyzed directed intermolecular fluoroarylation of styrenes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4101-4	16.4	120
	197	Asymmetric fluorination of Ebranched cyclohexanones enabled by a combination of chiral anion phase-transfer catalysis and enamine catalysis using protected amino acids. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5225-8	16.4	115
	196	Dual visible light photoredox and gold-catalyzed arylative ring expansion. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5844-7	16.4	330
	195	Gold Catalysed Redox Synthesis of Imidazo[1,2-]pyridine using Pyridine -Oxide and Alkynes. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 687-691	5.6	61
:	194	Ligand-based carbon-nitrogen bond forming reactions of metal dinitrosyl complexes with alkenes and their application to C-H bond functionalization. <i>Accounts of Chemical Research</i> , 2014 , 47, 517-29	24.3	32
	193	Application of Fundamental Organometallic Chemistry to the Development of a Gold-Catalyzed Synthesis of Sulfinate Derivatives. <i>Angewandte Chemie</i> , 2014 , 126, 4493-4496	3.6	59
	192	Gold-Catalyzed Allylation of Aryl Boronic Acids: Accessing Cross-Coupling Reactivity with Gold. <i>Angewandte Chemie</i> , 2014 , 126, 6325-6329	3.6	49
	191	Chiral Anion Phase Transfer of Aryldiazonium Cations: An Enantioselective Synthesis of C3-Diazenated Pyrroloindolines. <i>Angewandte Chemie</i> , 2014 , 126, 5706-5709	3.6	29
	190	The Chemistry of Gold Fluoride Complexes 2014 , 1-18		1
	189	Chemocatalytic upgrading of tailored fermentation products toward biodiesel. <i>ChemSusChem</i> , 2014 , 7, 2445-8	8.3	47
	188	Gold Catalysis. Catalytic Science Series, 2014,	0.4	65
	187	Gold(I)-catalyzed enantioselective bromocyclization reactions of allenes. <i>Chemical Science</i> , 2013 , 4, 3427	7 9.4	63
:	186	Gold(I)-catalyzed enantioselective carboalkoxylation of alkynes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12600-3	16.4	83
	185	Expanding the scope of biomass-derived chemicals through tandem reactions based on oxorhenium-catalyzed deoxydehydration. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12905-9	16.4	134
:	184	Chiral amide directed assembly of a diastereo- and enantiopure supramolecular host and its application to enantioselective catalysis of neutral substrates. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18802-5	16.4	151

183	Vanadium bisimide bonding investigated by X-ray crystallography, 51V and 13C nuclear magnetic resonance spectroscopy, and V L(3,2)-edge X-ray absorption near-edge structure spectroscopy. Inorganic Chemistry, 2013, 52, 11650-60	8
182	Asymmetric cross-dehydrogenative coupling enabled by the design and application of chiral triazole-containing phosphoric acids. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14044-7	161
181	Enantioselective Fluoroamination: 1,4-Addition to Conjugated Dienes Using Anionic Phase-Transfer Catalysis. <i>Angewandte Chemie</i> , 2013 , 125, 7878-7881	33
180	Preparation and reactivity of terminal gold(I) amides and phosphides. <i>Chemical Science</i> , 2013 , 4, 1023-10 <u>3.7</u>	40
179	Asymmetric catalysis at the mesoscale: gold nanoclusters embedded in chiral self-assembled monolayer as heterogeneous catalyst for asymmetric reactions. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3881-6	128
178	A supramolecular approach to combining enzymatic and transition metal catalysis. <i>Nature Chemistry</i> , 2013 , 5, 100-3	279
177	Chiral anion phase-transfer catalysis applied to the direct enantioselective fluorinative dearomatization of phenols. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1268-71	191
176	Studies on the Vanadium-Catalyzed Nonoxidative Depolymerization of Miscanthus giganteus-Derived Lignin. <i>ACS Catalysis</i> , 2013 , 3, 1369-1377	138
175	Enantioselective cyclization of enamide-ynes and application to the synthesis of the kopsifoline core. <i>Tetrahedron</i> , 2013 , 69, 5640-5646	18
174	Enantioselective fluoroamination: 1,4-addition to conjugated dienes using anionic phase-transfer catalysis. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 7724-7	116
173	Single-operation deracemization of 3H-indolines and tetrahydroquinolines enabled by phase separation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14090-3	92
172	A combination of directing groups and chiral anion phase-transfer catalysis for enantioselective fluorination of alkenes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 13729-33	104
171	Expanding the Scope of Biomass-Derived Chemicals through Tandem Reactions Based on Oxorhenium-Catalyzed Deoxydehydration. <i>Angewandte Chemie</i> , 2013 , 125, 13143-13147	41
170	Gold catalysis for organic synthesis II. <i>Beilstein Journal of Organic Chemistry</i> , 2013 , 9, 2040-1 2.5	7
169	Integration of chemical catalysis with extractive fermentation to produce fuels. <i>Nature</i> , 2012 , 491, 235-9 ₅ 0.4	288
168	Gold-Catalyzed Oxygen-Atom Transfer to Alkynes 2012 , 273-296	5
167	Gold¶lkene Complexes 2012 , 175-199	10
166	Gold-Catalyzed Reactions of Propargyl Esters, Propargyl Alcohols, and Related Compounds 2012 , 75-134	12

165	Gold-Catalyzed Benzannulations: AsaoMamamoto Benzopyrylium Pathway 2012 , 55-73		2
164	Gold-Catalyzed Reduction Reactions 2012 , 27-54		2
163	Hydrochlorination of Acetylene Catalyzed by Gold 2012 , 1-26		5
162	Selective monoterpene-like cyclization reactions achieved by water exclusion from reactive intermediates in a supramolecular catalyst. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17873-6	16.4	126
161	C(sp(3))-F reductive elimination from alkylgold(iii) fluoride complexes. <i>Chemical Science</i> , 2012 , 3, 72-76	9.4	125
160	Carbon monoxide, isocyanide, and nitrile complexes of cationic, d(0) vanadium bisimides: Eback bonding derived from the Bymmetry, bonding metal bisimido ligand orbitals. <i>Inorganic Chemistry</i> , 2012 , 51, 13334-44	5.1	29
159	The progression of chiral anions from concepts to applications in asymmetric catalysis. <i>Nature Chemistry</i> , 2012 , 4, 603-14	17.6	621
158	A Doubly Axially Chiral Phosphoric Acid Catalyst for the Asymmetric Tandem Oxyfluorination of Enamides. <i>Angewandte Chemie</i> , 2012 , 124, 9822-9826	3.6	50
157	A doubly axially chiral phosphoric acid catalyst for the asymmetric tandem oxyfluorination of enamides. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9684-8	16.4	139
156	Asymmetric fluorination of enamides: access to 任luoroimines using an anionic chiral phase-transfer catalyst. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8376-9	16.4	175
155	Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time. <i>Nature Chemistry</i> , 2012 , 4, 947-52	17.6	185
154	GoldAlkyne Complexes 2012 , 153-173		9
153	Enantioselective halocyclization using reagents tailored for chiral anion phase-transfer catalysis. Journal of the American Chemical Society, 2012 , 134, 12928-31	16.4	213
152	Enantioselective cyclizations of silyloxyenynes catalyzed by cationic metal phosphine complexes. Journal of the American Chemical Society, 2012 , 134, 2742-9	16.4	101
151	Gold-Catalyzed Addition Reactions to Allenes 2012 , 363-389		3
150	Hydration and Hydroalkoxylation of CC Multiple Bonds 2012 , 201-235		12
149	Gold-Catalyzed Additions to Alkenes: O-Nucleophiles 2012 , 303-307		1
148	Gold-Catalyzed Additions to Alkenes: N-Nucleophiles 2012 , 297-302		2

147	Oxidation of Alcohols and Carbohydrates 2012 , 309-329		1
146	Applications of Gold-Catalyzed Reactions to Natural Product Synthesis 2012 , 331-362		4
145	Intramolecular Hydroarylation of Alkynes 2012 , 135-152		6
144	Gold-Catalyzed Aldol and Related Reactions 2012 , 237-261		11
143	Gold-Catalyzed Oxidation Reactions: Oxidation of Alkenes 2012 , 263-272		О
142	Deoxygenation of Biomass-Derived Feedstocks: Oxorhenium-Catalyzed Deoxydehydration of Sugars and Sugar Alcohols. <i>Angewandte Chemie</i> , 2012 , 124, 8206-8210	3.6	73
141	Deoxygenation of biomass-derived feedstocks: oxorhenium-catalyzed deoxydehydration of sugars and sugar alcohols. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8082-6	16.4	190
140	Catalytic enantioselective carbon-carbon bond formation using cycloisomerization reactions. <i>Chemical Science</i> , 2012 , 3, 2899	9.4	169
139	Cluster Preface: Gold Catalysis for Organic Synthesis: Opportunities Abound. Synlett, 2012 , 2012, 46-48	2.2	7
138	Gold(I)-catalyzed diastereo- and enantioselective 1,3-dipolar cycloaddition and Mannich reactions of azlactones. <i>Journal of the American Chemical Society</i> , 2011 , 133, 3517-27	16.4	151
137	Gold catalysis for organic synthesis. Beilstein Journal of Organic Chemistry, 2011, 7, 553-4	2.5	13
136	Chiral (acyclic diaminocarbene)gold(I)-catalyzed dynamic kinetic asymmetric transformation of propargyl esters. <i>Journal of the American Chemical Society</i> , 2011 , 133, 12972-5	16.4	157
135	[(TMEDA)Co(NO)2][BPh4]: A versatile synthetic entry point to four and five coordinate {Co(NO)2}10 complexes. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 3974-3981	2.3	12
134	Enantioselective synthesis of highly substituted furans by a copper(II)-catalyzed cycloisomerization-indole addition reaction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8486-9	9 ^{16.4}	151
133	Two metals are better than one in the gold catalyzed oxidative heteroarylation of alkenes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14293-300	16.4	183
132	Phosphoramidite gold(I)-catalyzed diastereo- and enantioselective synthesis of 3,4-substituted pyrrolidines. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5500-7	16.4	186
131	Asymmetric additions to dienes catalysed by a dithiophosphoric acid. <i>Nature</i> , 2011 , 470, 245-9	50.4	171
130	Asymmetric electrophilic fluorination using an anionic chiral phase-transfer catalyst. <i>Science</i> , 2011 , 334, 1681-4	33.3	399

129	Synthesis of flinderoles B and C by a gold-catalyzed allene hydroarylation(). <i>Chemical Science</i> , 2011 , 2, 1706-1709	9.4	115
128	Enantioselective synthesis of cyclic carbamimidates via a three-component reaction of imines, terminal alkynes, and p-toluenesulfonylisocyanate using a monophosphine gold(I) catalyst(). <i>Chemical Science</i> , 2011 , 2, 1369-1378	9.4	99
127	Tandem Cycloisomerization/Suzuki Coupling of Arylethynyl MIDA Boronates. <i>Tetrahedron</i> , 2011 , 67, 43	0 <u>6-4</u> 31	235
126	Z-Selective Semihydrogenation of Alkynes Catalyzed by a Cationic Vanadium Bisimido Complex. <i>Angewandte Chemie</i> , 2011 , 123, 3986-3989	3.6	27
125	Synthesis of [RuCl2(NO)2(THF)] and its Double C?N Bond-Forming Reactions with Alkenes. <i>Angewandte Chemie</i> , 2011 , 123, 4576-4579	3.6	
124	Regio- and Enantioselective Hydroamination of Dienes by Gold(I)/Menthol Cooperative Catalysis. <i>Angewandte Chemie</i> , 2011 , 123, 10093-10096	3.6	44
123	Z-selective semihydrogenation of alkynes catalyzed by a cationic vanadium bisimido complex. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3900-3	16.4	98
122	Synthesis of [RuCl2(NO)2(THF)] and its double C-N bond-forming reactions with alkenes. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 4484-7	16.4	13
121	Regio- and enantioselective hydroamination of dienes by gold(I)/menthol cooperative catalysis. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9919-22	16.4	116
120	On the Diels-Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene. <i>Chemistry - A European Journal</i> , 2011 , 17, 12452-7	4.8	132
119	A Pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: X-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13527-33	16.4	88
118	Hydroalkoxylation catalyzed by a gold(I) complex encapsulated in a supramolecular host. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7358-60	16.4	187
117	Direct Michael addition of alkenes via a cobalt-dinitrosyl mediated vinylic C-H functionalization reaction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10787-9	16.4	31
116	Chiral Brfisted acid from a cationic gold(I) complex: catalytic enantioselective protonation of silyl enol ethers of ketones. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13248-51	16.4	98
115	A step beyond the Feltham-Enemark notation: spectroscopic and correlated ab initio computational support for an antiferromagnetically coupled M(II)-(NO)- description of Tp*M(NO) (M = Co, Ni). <i>Journal of the American Chemical Society</i> , 2011 , 133, 18785-801	16.4	83
114	Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. <i>Nature Chemistry</i> , 2010 , 2, 36-41	17.6	254
113	A Reactivity-Driven Approach to the Discovery and Development of Gold-Catalyzed Organic Reactions. <i>Synlett</i> , 2010 , 2010, 675-691	2.2	130
112	Gold(I)-catalyzed enantioselective [4 + 2]-cycloaddition of allene-dienes. <i>Organic Letters</i> , 2010 , 12, 200-	36.2	154

111	Highly active heterogeneous palladium nanoparticle catalysts for homogeneous electrophilic reactions in solution and the utilization of a continuous flow reactor. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16771-3	16.4	98
110	Gold-catalyzed oxidative coupling reactions with aryltrimethylsilanes. <i>Organic Letters</i> , 2010 , 12, 4728-37	16.2	132
109	Cobalt-mediated, enantioselective synthesis of C(2) and C(1) dienes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16365-7	16.4	24
108	Gold-catalyzed three-component coupling: oxidative oxyarylation of alkenes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8885-7	16.4	232
107	Mechanistic study of gold(I)-catalyzed intermolecular hydroamination of allenes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13064-71	16.4	160
106	Gold(I)-catalyzed enantioselective polycyclization reactions. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8276-7	16.4	175
105	Alkylgold complexes by the intramolecular aminoauration of unactivated alkenes. <i>Chemical Science</i> , 2010 , 1,	9.4	161
104	C-C coupling reactivity of an alkylgold(III) fluoride complex with arylboronic acids. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12859-61	16.4	127
103	Enantioselective reduction of ketones and imines catalyzed by (CN-box)Re(V)-oxo complexes. <i>Chemistry - A European Journal</i> , 2010 , 16, 9555-62	4.8	84
102	Gold(I)-catalyzed enantioselective synthesis of pyrazolidines, isoxazolidines, and tetrahydrooxazines. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 598-601	16.4	257
101	Non-oxidative vanadium-catalyzed C-O bond cleavage: application to degradation of lignin model compounds. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3791-4	16.4	275
100	Gold-catalyzed intramolecular aminoarylation of alkenes: C-C bond formation through bimolecular reductive elimination. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 5519-22	16.4	220
99	Asymmetric synthesis of medium-sized rings by intramolecular Au(I)-catalyzed cyclopropanation. Journal of the American Chemical Society, 2009 , 131, 2056-7	16.4	232
98	A bonding model for gold(I) carbene complexes. <i>Nature Chemistry</i> , 2009 , 1, 482-6	17.6	416
97	On the impact of steric and electronic properties of ligands on gold(I)-catalyzed cycloaddition reactions. <i>Organic Letters</i> , 2009 , 11, 4798-801	6.2	146
96	Gold-catalyzed [3+3]-annulation of azomethine imines with propargyl esters. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11654-5	16.4	194
95	Development of ruthenium catalysts for the enantioselective synthesis of P-stereogenic phosphines via nucleophilic phosphido intermediates. <i>Journal of the American Chemical Society</i> , 2009 , 131, 6021-32	16.4	148
94	Au(I)-Catalyzed cycloisomerizations terminated by sp(3) C-H bond insertion. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2809-11	16.4	146

(2007-2009)

93	Mechanistic studies on Au(I)-catalyzed [3,3]-sigmatropic rearrangements using cyclopropane probes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4513-20	16.4	197
92	Gold(I)-catalyzed enantioselective synthesis of benzopyrans via rearrangement of allylic oxonium intermediates. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3464-5	16.4	152
91	Cobalt-mediated [3 + 2]-annulation reaction of alkenes with alpha, beta-unsaturated ketones and imines. <i>Organic Letters</i> , 2009 , 11, 3698-700	6.2	24
90	Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9178-9	16.4	203
89	Ligand-controlled access to $[4 + 2]$ and $[4 + 3]$ cycloadditions in gold-catalyzed reactions of allene-dienes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 6348-9	16.4	217
88	Fluorenes and styrenes by Au(I)-catalyzed annulation of enynes and alkynes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3736-7	16.4	141
87	Cobalt dinitrosoalkane complexes in the C-H functionalization of olefins. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3777-9	16.4	41
86	Ligand effects in homogeneous Au catalysis. <i>Chemical Reviews</i> , 2008 , 108, 3351-78	68.1	1865
85	Gold-catalyzed cycloisomerization of 1,5-allenynes via dual activation of an ene reaction. <i>Journal of the American Chemical Society</i> , 2008 , 130, 4517-26	16.4	271
84	Chiral anion-mediated asymmetric ring opening of meso-aziridinium and episulfonium ions. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14984-6	16.4	182
83	Au(I)-catalyzed ring expanding cycloisomerizations: total synthesis of ventricosene. <i>Organic Letters</i> , 2008 , 10, 4315-8	6.2	164
82	Synthesis of azepines by a gold-catalyzed intermolecular [4 + 3]-annulation. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9244-5	16.4	211
81	Synthesis and structural characterization of isolable phosphine coinage metal 🛭 complexes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 2779-2782	11.5	141
80	Synthesis of (-)-octalactin a by a strategic vanadium-catalyzed oxidative kinetic resolution. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3755-8	16.4	45
79	Au(I)-catalyzed enantioselective 1,3-dipolar cycloadditions of māchnones with electron-deficient alkenes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12638-9	16.4	160
78	Gold(I)-catalyzed [2 + 2]-cycloaddition of allenenes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12402-3	16.4	238
77	Palladium-catalyzed enantioselective cyclization of silyloxy-1,6-enynes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2764-5	16.4	131
76	Gold(I)-catalyzed regioselective cyclizations of silyl ketene amides and carbamates with alkynes. <i>Journal of Organic Chemistry</i> , 2007 , 72, 6287-9	4.2	71

75	Analysis of an unprecedented mechanism for the catalytic hydrosilylation of carbonyl compounds. Journal of the American Chemical Society, 2007 , 129, 14684-96	16.4	137
74	Rearrangement of alkynyl sulfoxides catalyzed by gold(I) complexes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 4160-1	16.4	325
73	Gold(I)-catalyzed oxidative rearrangements. Journal of the American Chemical Society, 2007, 129, 5838-	916.4	303
72	Pd-catalyzed dynamic kinetic enantioselective arylation of silylphosphines. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15122-3	16.4	96
71	Gold(I)-catalyzed synthesis of functionalized cyclopentadienes. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 912-4	16.4	182
70	Total synthesis of (+)-fawcettimine. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7671-3	16.4	153
69	Relativistic effects in homogeneous gold catalysis. <i>Nature</i> , 2007 , 446, 395-403	50.4	1588
68	A powerful chiral counterion strategy for asymmetric transition metal catalysis. <i>Science</i> , 2007 , 317, 496	-9 3.3	766
67	Gold(I)-catalyzed enantioselective intramolecular hydroamination of allenes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2452-3	16.4	413
66	Enantioselective synthesis of cyclic ethers through a vanadium-catalyzed resolution/oxidative cyclization. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2096-9	16.4	77
65	Gold(I)-catalyzed cyclizations of silyl enol ethers: application to the synthesis of (+)-lycopladine A. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 5991-4	16.4	219
64	Enantioselective Synthesis of Cyclic Ethers through a Vanadium-Catalyzed Resolution/Oxidative Cyclization. <i>Angewandte Chemie</i> , 2006 , 118, 2150-2153	3.6	13
63	Gold(I)-Catalyzed Cyclizations of Silyl Enol Ethers: Application to the Synthesis of (+)-Lycopladine A. <i>Angewandte Chemie</i> , 2006 , 118, 6137-6140	3.6	75
62	Enantioselective synthesis of gamma-hydroxyenones by chiral base-catalyzed Kornblum DeLaMare rearrangement. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12658-9	16.4	96
61	Gold(I)-catalyzed synthesis of dihydropyrans. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8132	-3 16.4	190
60	Synthesis of benzonorcaradienes by gold(I)-catalyzed [4+3] annulation. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14480-1	16.4	165
59	Synthesis of aromatic ketones by a transition metal-catalyzed tandem sequence. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7436-7	16.4	234
58	Stereoselective synthesis of vinylsilanes by a gold(I)-catalyzed acetylenic sila-cope rearrangement. Journal of the American Chemical Society, 2006, 128, 11364-5	16.4	80

(2004-2006)

57	Synthesis of indenyl ethers by gold(I)-catalyzed intramolecular carboalkoxylation of alkynes. Journal of the American Chemical Society, 2006 , 128, 12062-3	16.4	192
56	Asymmetric catalytic synthesis of P-stereogenic phosphines via a nucleophilic ruthenium phosphido complex. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2786-7	16.4	137
55	Gold(I)-catalyzed stereoselective olefin cyclopropanation. <i>Journal of the American Chemical Society</i> , 2005 , 127, 18002-3	16.4	468
54	Gold(I)-catalyzed ring expansion of cyclopropanols and cyclobutanols. <i>Journal of the American Chemical Society</i> , 2005 , 127, 9708-9	16.4	198
53	Gold(I)-catalyzed intramolecular acetylenic Schmidt reaction. <i>Journal of the American Chemical Society</i> , 2005 , 127, 11260-1	16.4	459
52	Vanadium-catalyzed asymmetric oxidation of alpha-hydroxy esters using molecular oxygen as stoichiometric oxidant. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1090-1	16.4	178
51	Synthesis of 2-cyclopentenones by gold(I)-catalyzed Rautenstrauch rearrangement. <i>Journal of the American Chemical Society</i> , 2005 , 127, 5802-3	16.4	378
50	Living ring-opening polymerization of N-sulfonylaziridines: synthesis of high molecular weight linear polyamines. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17616-7	16.4	81
49	Divergent enantioselective synthesis of (-)-galanthamine and (-)-morphine. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14785-803	16.4	160
48	A Re(V)-catalyzed C-N bond-forming route to human lipoxygenase inhibitors. <i>Organic Letters</i> , 2005 , 7, 2501-4	6.2	110
47	Catalytic enantioselective Conia-ene reaction. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1710	5 8:9 .4	187
46	Enantioselective reduction of imines catalyzed by a rhenium(V)-oxo complex. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12462-3	16.4	171
45	Syntheses of seven-membered rings: ruthenium-catalyzed intramolecular [5+2] cycloadditions. <i>Chemistry - A European Journal</i> , 2005 , 11, 2577-90	4.8	122
44	Gold(I)-catalyzed 5-endo-dig carbocyclization of acetylenic dicarbonyl compounds. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 5350-2	16.4	227
43	Gold(I)-Catalyzed 5-endo-dig Carbocyclization of Acetylenic Dicarbonyl Compounds. <i>Angewandte Chemie</i> , 2004 , 116, 5464-5466	3.6	76
42	Ruthenium-catalyzed enyne cycloisomerizations. Effect of allylic silyl ether on regioselectivity. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15592-602	16.4	57
41	Gold(I)-catalyzed Conia-ene reaction of beta-ketoesters with alkynes. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4526-7	16.4	380
40	Catalytic isomerization of 1,5-enynes to bicyclo[3.1.0]hexenes. <i>Journal of the American Chemical Society</i> , 2004 , 126, 10858-9	16.4	327

39	Gold(I)-catalyzed propargyl Claisen rearrangement. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15978-9	16.4	319
38	Rhenium-catalyzed aromatic propargylation. <i>Organic Letters</i> , 2004 , 6, 1325-7	6.2	134
37	Rhenium(V)-catalyzed synthesis of 2-deoxy-alpha-glycosides. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4510-1	16.4	139
36	Rhenium-catalyzed coupling of propargyl alcohols and allyl silanes. <i>Journal of the American Chemical Society</i> , 2003 , 125, 15760-1	16.4	143
35	Reversing the role of the metal[bond]oxygen pi-bond. Chemoselective catalytic reductions with a rhenium(V)-dioxo complex. <i>Journal of the American Chemical Society</i> , 2003 , 125, 4056-7	16.4	151
34	Palladium catalyzed kinetic and dynamic kinetic asymmetric transformations of gamma-acyloxybutenolides. Enantioselective total synthesis of (+)-Aflatoxin B1 and B2a. <i>Journal of the American Chemical Society</i> , 2003 , 125, 3090-100	16.4	114
33	Phosphine-catalyzed hydration and hydroalkoxylation of activated olefins: use of a strong nucleophile to generate a strong base. <i>Journal of the American Chemical Society</i> , 2003 , 125, 8696-7	16.4	215
32	Atom economy. Palladium-catalyzed formation of coumarins by addition of phenols and alkynoates via a net C-H insertion. <i>Journal of the American Chemical Society</i> , 2003 , 125, 4518-26	16.4	195
31	A mild C-O bond formation catalyzed by a rhenium-oxo complex. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6076-7	16.4	137
30	Ruthenium-Catalyzed Olefin Cross Metathesis of Styrenes as an Alternative to the Heck and Cross-Coupling Reactions. <i>Advanced Synthesis and Catalysis</i> , 2002 , 344, 634	5.6	61
29	Mechanistic dichotomy in CpRu(CH(3)CN)(3)PF(6) catalyzed enyne cycloisomerizations. <i>Journal of the American Chemical Society</i> , 2002 , 124, 5025-36	16.4	78
28	Functional group diversity by ruthenium-catalyzed olefin cross-metathesis. <i>Pure and Applied Chemistry</i> , 2002 , 74, 7-10	2.1	58
27	Synthesis of the First (1-3:6,7-ECyclodecadienyl)ruthenium Complex by the Intramolecular Reaction of an Alkene and a Vinylcyclopropane. <i>Angewandte Chemie</i> , 2001 , 113, 1148-1150	3.6	3
26	Synthesis of the First (1-3:6,7-eta-Cyclodecadienyl)ruthenium Complex by the Intramolecular Reaction of an Alkene and a Vinylcyclopropane We thank the National Science Foundation and the National Institutes of Health (NIH), General Medical Sciences, for their generous support of our	16.4	20
25	Synthesis of 1,1-disubstituted alkenes via a Ru-catalyzed addition. <i>Journal of the American Chemical Society</i> , 2001 , 123, 12504-9	16.4	56
24	Non-metathesis ruthenium-catalyzed C-C bond formation. <i>Chemical Reviews</i> , 2001 , 101, 2067-96	68.1	699
23	An atom-economical three-carbon chain extension of alkynes to form E-enol silanes. <i>Journal of the American Chemical Society</i> , 2001 , 123, 2897-8	16.4	30
22	Enantioselective Total Synthesis of (I-Galanthamine. <i>Journal of the American Chemical Society</i> , 2000 , 122, 11262-11263	16.4	138

21	A Ruthenium-Catalyzed Hydrative Cyclization and [4 + 2] Cycloaddition of Yne-enones. <i>Journal of the American Chemical Society</i> , 2000 , 122, 5877-5878	16.4	68
20	Deracemization of BaylisHillman Adducts. <i>Journal of the American Chemical Society</i> , 2000 , 122, 3534-353	35 6.4	149
19	Ruthenium-Catalyzed Cycloisomerizations of 1,6- and 1,7-Enynes. <i>Journal of the American Chemical Society</i> , 2000 , 122, 714-715	16.4	137
18	Ruthenium-Catalyzed Intramolecular [5 + 2] Cycloadditions. <i>Journal of the American Chemical Society</i> , 2000 , 122, 2379-2380	16.4	209
17	A versatile synthetic route to 1,5-dithiocins from o-mercapto aromatic aldehydes. <i>Canadian Journal of Chemistry</i> , 1999 , 77, 113-121	0.9	21
16	A new Ru catalyst for alkene?alkyne coupling. <i>Tetrahedron Letters</i> , 1999 , 40, 7739-7743	2	78
15	Regio- and Enantioselective Allylic Alkylation of an Unsymmetrical Substrate: A Working Model. Journal of the American Chemical Society, 1999 , 121, 4545-4554	16.4	285
14	Ruthenium-Catalyzed Cycloisomerization of 1,6-Enynes Initiated by CH Activation. <i>Journal of the American Chemical Society</i> , 1999 , 121, 9728-9729	16.4	69
13	Palladium-Catalyzed Kinetic and Dynamic Kinetic Asymmetric Transformation of 5-Acyloxy-2-(5H)-furanone. Enantioselective Synthesis of (PAflatoxin B Lactone. <i>Journal of the American Chemical Society</i> , 1999 , 121, 3543-3544	16.4	126
12	A Two-Component Catalyst System for Asymmetric Allylic Alkylations with Alcohol Pronucleophiles. <i>Journal of the American Chemical Society</i> , 1998 , 120, 12702-12703	16.4	111
11	Asymmetric O- and C-Alkylation of Phenols. <i>Journal of the American Chemical Society</i> , 1998 , 120, 815-81	6 16.4	181
10	A Catalytic Enantioselective Approach to Chromans and Chromanols. A Total Synthesis of (IFCalanolides A and B and the Vitamin E Nucleus. <i>Journal of the American Chemical Society</i> , 1998 , 120, 9074-9075	16.4	162
9	Reduction of Aryl Thiocyanates with SmI(2) and Pd-Catalyzed Coupling with Aryl Halides as a Route to Mixed Aryl Sulfides. <i>Journal of Organic Chemistry</i> , 1996 , 61, 7677-7680	4.2	65
8	A New Palladium-Catalyzed Addition: A Mild Method for the Synthesis of Coumarins. <i>Journal of the American Chemical Society</i> , 1996 , 118, 6305-6306	16.4	159
7	A SIMPLE METHOD FOR THE SELECTIVE MOM PROTECTION OF THIOLS. Synlett, 1995 , 1995, 159-160	2.2	4
6	A Versatile Procedure for the Preparation of Aryl Thiocyanates Using N-Thiocyanatosuccinimide (NTS). <i>Synthetic Communications</i> , 1995 , 25, 1277-1286	1.7	77
5	SONICATION AND ALUMINUM AMALGAM IN THE LEIMGRUBER-BATCHO REACTION. AN IMPROVED PREPARATION OF 6-AMINOINDOLE. <i>Organic Preparations and Procedures International</i> , 1995 , 27, 576-579	1.1	5
4	A New Route to the Synthesis of the Naturally Occurring Benzopentathiepin Varacin. <i>Journal of the American Chemical Society</i> , 1995 , 117, 7261-7262	16.4	73

3	Chemistry, 1994 , 5, 251-257	1.2	1	
2	Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation		1	
1	Profiling the Proteome-Wide Selectivity of Diverse Electrophiles		6	