Francisco Dean Toste

List of Publications by Citations

Source: https://exaly.com/author-pdf/1445809/francisco-dean-toste-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

362 papers

41,318 citations

125 h-index 193 g-index

523 ext. papers

45,447 ext. citations

14.6 avg, IF

8.08 L-index

#	Paper	IF	Citations
362	Ligand effects in homogeneous Au catalysis. <i>Chemical Reviews</i> , 2008 , 108, 3351-78	68.1	1865
361	Relativistic effects in homogeneous gold catalysis. <i>Nature</i> , 2007 , 446, 395-403	50.4	1588
360	Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. <i>Chemical Reviews</i> , 2015 , 115, 826-70	68.1	938
359	Supramolecular catalysis in metal-ligand cluster hosts. <i>Chemical Reviews</i> , 2015 , 115, 3012-35	68.1	829
358	A powerful chiral counterion strategy for asymmetric transition metal catalysis. <i>Science</i> , 2007 , 317, 496	5 -9 3.3	766
357	Non-metathesis ruthenium-catalyzed C-C bond formation. <i>Chemical Reviews</i> , 2001 , 101, 2067-96	68.1	699
356	The progression of chiral anions from concepts to applications in asymmetric catalysis. <i>Nature Chemistry</i> , 2012 , 4, 603-14	17.6	621
355	Gold(I)-catalyzed stereoselective olefin cyclopropanation. <i>Journal of the American Chemical Society</i> , 2005 , 127, 18002-3	16.4	468
354	Gold(I)-catalyzed intramolecular acetylenic Schmidt reaction. <i>Journal of the American Chemical Society</i> , 2005 , 127, 11260-1	16.4	459
353	Exploiting non-covalent Interactions for catalyst design. <i>Nature</i> , 2017 , 543, 637-646	50.4	423
352	A bonding model for gold(I) carbene complexes. <i>Nature Chemistry</i> , 2009 , 1, 482-6	17.6	416
351	Gold(I)-catalyzed enantioselective intramolecular hydroamination of allenes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2452-3	16.4	413
350	Asymmetric electrophilic fluorination using an anionic chiral phase-transfer catalyst. <i>Science</i> , 2011 , 334, 1681-4	33.3	399
349	Development of catalysts and ligands for enantioselective gold catalysis. <i>Accounts of Chemical Research</i> , 2014 , 47, 889-901	24.3	395
348	Gold(I)-catalyzed Conia-ene reaction of beta-ketoesters with alkynes. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4526-7	16.4	380
347	Synthesis of 2-cyclopentenones by gold(I)-catalyzed Rautenstrauch rearrangement. <i>Journal of the American Chemical Society</i> , 2005 , 127, 5802-3	16.4	378
346	Dual visible light photoredox and gold-catalyzed arylative ring expansion. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5844-7	16.4	330

(2009-2004)

345	Catalytic isomerization of 1,5-enynes to bicyclo[3.1.0]hexenes. <i>Journal of the American Chemical Society</i> , 2004 , 126, 10858-9	16.4	327
344	Recent advances in enantioselective gold catalysis. <i>Chemical Society Reviews</i> , 2016 , 45, 4567-89	58.5	325
343	Rearrangement of alkynyl sulfoxides catalyzed by gold(I) complexes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 4160-1	16.4	325
342	Gold(I)-catalyzed propargyl Claisen rearrangement. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15978-9	16.4	319
341	Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. <i>Chemical Reviews</i> , 2018 , 118, 3887-3964	68.1	316
340	Gold(I)-catalyzed oxidative rearrangements. Journal of the American Chemical Society, 2007, 129, 5838-9	916.4	303
339	A supramolecular microenvironment strategy for transition metal catalysis. <i>Science</i> , 2015 , 350, 1235-8	33.3	291
338	Integration of chemical catalysis with extractive fermentation to produce fuels. <i>Nature</i> , 2012 , 491, 235-	· 9 50.4	288
337	Regio- and Enantioselective Allylic Alkylation of an Unsymmetrical Substrate: A Working Model. Journal of the American Chemical Society, 1999 , 121, 4545-4554	16.4	285
336	A supramolecular approach to combining enzymatic and transition metal catalysis. <i>Nature Chemistry</i> , 2013 , 5, 100-3	17.6	279
335	Non-oxidative vanadium-catalyzed C-O bond cleavage: application to degradation of lignin model compounds. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3791-4	16.4	275
334	Gold-catalyzed cycloisomerization of 1,5-allenynes via dual activation of an ene reaction. <i>Journal of the American Chemical Society</i> , 2008 , 130, 4517-26	16.4	271
333	Gold(I)-catalyzed enantioselective synthesis of pyrazolidines, isoxazolidines, and tetrahydrooxazines. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 598-601	16.4	257
332	Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. <i>Nature Chemistry</i> , 2010 , 2, 36-41	17.6	254
331	Gold(I)-catalyzed [2 + 2]-cycloaddition of allenenes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12402-3	16.4	238
330	Synthesis of aromatic ketones by a transition metal-catalyzed tandem sequence. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7436-7	16.4	234
329	Gold-catalyzed three-component coupling: oxidative oxyarylation of alkenes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8885-7	16.4	232
328	Asymmetric synthesis of medium-sized rings by intramolecular Au(I)-catalyzed cyclopropanation. Journal of the American Chemical Society, 2009 , 131, 2056-7	16.4	232

327	Redox-based reagents for chemoselective methionine bioconjugation. <i>Science</i> , 2017 , 355, 597-602	33.3	231
326	Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond. <i>CheM</i> , 2016 , 1, 32-58	16.2	230
325	Gold(I)-catalyzed 5-endo-dig carbocyclization of acetylenic dicarbonyl compounds. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 5350-2	16.4	227
324	Gold-catalyzed intramolecular aminoarylation of alkenes: C-C bond formation through bimolecular reductive elimination. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 5519-22	16.4	220
323	Gold(I)-catalyzed cyclizations of silyl enol ethers: application to the synthesis of (+)-lycopladine A. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 5991-4	16.4	219
322	Stable gold(III) catalysts by oxidative addition of a carbon-carbon bond. <i>Nature</i> , 2015 , 517, 449-54	50.4	217
321	Ligand-controlled access to $[4 + 2]$ and $[4 + 3]$ cycloadditions in gold-catalyzed reactions of allene-dienes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 6348-9	16.4	217
320	Phosphine-catalyzed hydration and hydroalkoxylation of activated olefins: use of a strong nucleophile to generate a strong base. <i>Journal of the American Chemical Society</i> , 2003 , 125, 8696-7	16.4	215
319	Enantioselective halocyclization using reagents tailored for chiral anion phase-transfer catalysis. Journal of the American Chemical Society, 2012 , 134, 12928-31	16.4	213
318	Synthesis of azepines by a gold-catalyzed intermolecular [4 + 3]-annulation. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9244-5	16.4	211
317	Ruthenium-Catalyzed Intramolecular [5 + 2] Cycloadditions. <i>Journal of the American Chemical Society</i> , 2000 , 122, 2379-2380	16.4	209
316	Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9178-9	16.4	203
315	Gold(I)-catalyzed ring expansion of cyclopropanols and cyclobutanols. <i>Journal of the American Chemical Society</i> , 2005 , 127, 9708-9	16.4	198
314	Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts. <i>Accounts of Chemical Research</i> , 2018 , 51, 2447-2455	24.3	198
313	Mechanistic studies on Au(I)-catalyzed [3,3]-sigmatropic rearrangements using cyclopropane probes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4513-20	16.4	197
312	Application of fundamental organometallic chemistry to the development of a gold-catalyzed synthesis of sulfinate derivatives. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 4404-7	16.4	196
311	Atom economy. Palladium-catalyzed formation of coumarins by addition of phenols and alkynoates via a net C-H insertion. <i>Journal of the American Chemical Society</i> , 2003 , 125, 4518-26	16.4	195
310	Gold-catalyzed [3+3]-annulation of azomethine imines with propargyl esters. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11654-5	16.4	194

(2005-2006)

309	Synthesis of indenyl ethers by gold(I)-catalyzed intramolecular carboalkoxylation of alkynes. Journal of the American Chemical Society, 2006 , 128, 12062-3	16.4	192	
308	Chiral anion phase-transfer catalysis applied to the direct enantioselective fluorinative dearomatization of phenols. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1268-71	16.4	191	
307	Deoxygenation of biomass-derived feedstocks: oxorhenium-catalyzed deoxydehydration of sugars and sugar alcohols. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8082-6	16.4	190	
306	Gold(I)-catalyzed synthesis of dihydropyrans. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8132	2-316.4	190	
305	Hydroalkoxylation catalyzed by a gold(I) complex encapsulated in a supramolecular host. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7358-60	16.4	187	
304	Catalytic enantioselective Conia-ene reaction. <i>Journal of the American Chemical Society</i> , 2005 , 127, 171	68 <i>1</i> 9.4	187	
303	Phosphoramidite gold(I)-catalyzed diastereo- and enantioselective synthesis of 3,4-substituted pyrrolidines. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5500-7	16.4	186	
302	Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time. <i>Nature Chemistry</i> , 2012 , 4, 947-52	17.6	185	
301	Two metals are better than one in the gold catalyzed oxidative heteroarylation of alkenes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14293-300	16.4	183	
300	Chiral anion-mediated asymmetric ring opening of meso-aziridinium and episulfonium ions. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14984-6	16.4	182	
299	Gold(I)-catalyzed synthesis of functionalized cyclopentadienes. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 912-4	16.4	182	
298	Asymmetric O- and C-Alkylation of Phenols. <i>Journal of the American Chemical Society</i> , 1998 , 120, 815-8	16 16.4	181	
297	Vanadium-catalyzed asymmetric oxidation of alpha-hydroxy esters using molecular oxygen as stoichiometric oxidant. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1090-1	16.4	178	
296	Asymmetric fluorination of enamides: access to Fluoroimines using an anionic chiral phase-transfer catalyst. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8376-9	16.4	175	
295	Gold(I)-catalyzed enantioselective polycyclization reactions. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8276-7	16.4	175	
294	Exceptionally fast carbon-carbon bond reductive elimination from gold(III). <i>Nature Chemistry</i> , 2014 , 6, 159-64	17.6	171	
293	Asymmetric additions to dienes catalysed by a dithiophosphoric acid. <i>Nature</i> , 2011 , 470, 245-9	50.4	171	
292	Enantioselective reduction of imines catalyzed by a rhenium(V)-oxo complex. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12462-3	16.4	171	

291	Catalytic enantioselective carbon-carbon bond formation using cycloisomerization reactions. <i>Chemical Science</i> , 2012 , 3, 2899	9.4	169
29 0	A dual catalytic strategy for carbon-phosphorus cross-coupling via gold and photoredox catalysis. <i>Chemical Science</i> , 2015 , 6, 1194-1198	9.4	166
289	Synthesis of benzonorcaradienes by gold(I)-catalyzed [4+3] annulation. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14480-1	16.4	165
288	Au(I)-catalyzed ring expanding cycloisomerizations: total synthesis of ventricosene. <i>Organic Letters</i> , 2008 , 10, 4315-8	6.2	164
287	Photoredox Catalysis Unlocks Single-Electron Elementary Steps in Transition Metal Catalyzed Cross-Coupling. <i>ACS Central Science</i> , 2016 , 2, 293-301	16.8	164
286	A Catalytic Enantioselective Approach to Chromans and Chromanols. A Total Synthesis of (IFCalanolides A and B and the Vitamin E Nucleus. <i>Journal of the American Chemical Society</i> , 1998 , 120, 9074-9075	16.4	162
285	Asymmetric cross-dehydrogenative coupling enabled by the design and application of chiral triazole-containing phosphoric acids. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14044-7	16.4	161
284	Alkylgold complexes by the intramolecular aminoauration of unactivated alkenes. <i>Chemical Science</i> , 2010 , 1,	9.4	161
283	Mechanistic study of gold(I)-catalyzed intermolecular hydroamination of allenes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13064-71	16.4	160
282	Au(I)-catalyzed enantioselective 1,3-dipolar cycloadditions of mfichnones with electron-deficient alkenes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12638-9	16.4	160
281	Divergent enantioselective synthesis of (-)-galanthamine and (-)-morphine. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14785-803	16.4	160
2 80	A New Palladium-Catalyzed Addition: A Mild Method for the Synthesis of Coumarins. <i>Journal of the American Chemical Society</i> , 1996 , 118, 6305-6306	16.4	159
279	Chiral (acyclic diaminocarbene)gold(I)-catalyzed dynamic kinetic asymmetric transformation of propargyl esters. <i>Journal of the American Chemical Society</i> , 2011 , 133, 12972-5	16.4	157
278	Enantioselective Oxidative Homocoupling and Cross-Coupling of 2-Naphthols Catalyzed by Chiral Iron Phosphate Complexes. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16553-16560	16.4	154
277	Gold(I)-catalyzed enantioselective [4 + 2]-cycloaddition of allene-dienes. <i>Organic Letters</i> , 2010 , 12, 200-	36.2	154
276	Total synthesis of (+)-fawcettimine. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7671-3	16.4	153
275	Gold(I)-catalyzed enantioselective synthesis of benzopyrans via rearrangement of allylic oxonium intermediates. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3464-5	16.4	152
274	Chiral amide directed assembly of a diastereo- and enantiopure supramolecular host and its application to enantioselective catalysis of neutral substrates. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18802-5	16.4	151

273	Gold(I)-catalyzed diastereo- and enantioselective 1,3-dipolar cycloaddition and Mannich reactions of azlactones. <i>Journal of the American Chemical Society</i> , 2011 , 133, 3517-27	16.4	151	
272	Enantioselective synthesis of highly substituted furans by a copper(II)-catalyzed cycloisomerization-indole addition reaction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8486-	9 ^{16.4}	151	
271	Reversing the role of the metal[bond]oxygen pi-bond. Chemoselective catalytic reductions with a rhenium(V)-dioxo complex. <i>Journal of the American Chemical Society</i> , 2003 , 125, 4056-7	16.4	151	
270	Deracemization of Baylis⊞illman Adducts. <i>Journal of the American Chemical Society</i> , 2000 , 122, 3534-35	3≨6.4	149	
269	Organic chemistry. A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis. <i>Science</i> , 2015 , 347, 737-43	33.3	148	
268	Development of ruthenium catalysts for the enantioselective synthesis of P-stereogenic phosphines via nucleophilic phosphido intermediates. <i>Journal of the American Chemical Society</i> , 2009 , 131, 6021-32	16.4	148	
267	Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. <i>Accounts of Chemical Research</i> , 2017 , 50, 609-615	24.3	147	
266	Seven Post-synthetic Covalent Reactions in Tandem Leading to Enzyme-like Complexity within Metal-Organic Framework Crystals. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8352-5	16.4	146	
265	On the impact of steric and electronic properties of ligands on gold(I)-catalyzed cycloaddition reactions. <i>Organic Letters</i> , 2009 , 11, 4798-801	6.2	146	
264	Au(I)-Catalyzed cycloisomerizations terminated by sp(3) C-H bond insertion. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2809-11	16.4	146	
263	Gold-catalyzed allylation of aryl boronic acids: accessing cross-coupling reactivity with gold. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 6211-5	16.4	145	
262	Rhenium-catalyzed coupling of propargyl alcohols and allyl silanes. <i>Journal of the American Chemical Society</i> , 2003 , 125, 15760-1	16.4	143	
261	Fluorenes and styrenes by Au(I)-catalyzed annulation of enynes and alkynes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3736-7	16.4	141	
260	Synthesis and structural characterization of isolable phosphine coinage metal 🛭 complexes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 2779-2782	11.5	141	
259	High-spatial-resolution mapping of catalytic reactions on single particles. <i>Nature</i> , 2017 , 541, 511-515	50.4	140	
258	A doubly axially chiral phosphoric acid catalyst for the asymmetric tandem oxyfluorination of enamides. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9684-8	16.4	139	
257	Rhenium(V)-catalyzed synthesis of 2-deoxy-alpha-glycosides. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4510-1	16.4	139	
256	Gold(I)-catalyzed dearomative Rautenstrauch rearrangement: enantioselective access to cyclopenta[b]indoles. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3225-8	16.4	138	

255	Studies on the Vanadium-Catalyzed Nonoxidative Depolymerization of Miscanthus giganteus-Derived Lignin. <i>ACS Catalysis</i> , 2013 , 3, 1369-1377	13.1	138
254	Enantioselective Total Synthesis of (I) Galanthamine. <i>Journal of the American Chemical Society</i> , 2000 , 122, 11262-11263	16.4	138
253	Analysis of an unprecedented mechanism for the catalytic hydrosilylation of carbonyl compounds. Journal of the American Chemical Society, 2007 , 129, 14684-96	16.4	137
252	Asymmetric catalytic synthesis of P-stereogenic phosphines via a nucleophilic ruthenium phosphido complex. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2786-7	16.4	137
251	A mild C-O bond formation catalyzed by a rhenium-oxo complex. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6076-7	16.4	137
250	Ruthenium-Catalyzed Cycloisomerizations of 1,6- and 1,7-Enynes. <i>Journal of the American Chemical Society</i> , 2000 , 122, 714-715	16.4	137
249	Expanding the scope of biomass-derived chemicals through tandem reactions based on oxorhenium-catalyzed deoxydehydration. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12905-9	16.4	134
248	Rhenium-catalyzed aromatic propargylation. <i>Organic Letters</i> , 2004 , 6, 1325-7	6.2	134
247	On the Diels-Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene. <i>Chemistry - A European Journal</i> , 2011 , 17, 12452-7	4.8	132
246	Gold-catalyzed oxidative coupling reactions with aryltrimethylsilanes. <i>Organic Letters</i> , 2010 , 12, 4728-37	16.2	132
245	Palladium-catalyzed enantioselective cyclization of silyloxy-1,6-enynes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2764-5	16.4	131
244	A Reactivity-Driven Approach to the Discovery and Development of Gold-Catalyzed Organic Reactions. <i>Synlett</i> , 2010 , 2010, 675-691	2.2	130
243	Visible light-mediated gold-catalysed carbon(sp)-carbon(sp) cross-coupling. <i>Chemical Science</i> , 2016 , 7, 85-88	9.4	129
242	Asymmetric catalysis at the mesoscale: gold nanoclusters embedded in chiral self-assembled monolayer as heterogeneous catalyst for asymmetric reactions. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3881-6	16.4	128
241	C-C coupling reactivity of an alkylgold(III) fluoride complex with arylboronic acids. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12859-61	16.4	127
240	Selective monoterpene-like cyclization reactions achieved by water exclusion from reactive intermediates in a supramolecular catalyst. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17873-6	5 ^{16.4}	126
239	Palladium-Catalyzed Kinetic and Dynamic Kinetic Asymmetric Transformation of 5-Acyloxy-2-(5H)-furanone. Enantioselective Synthesis of (PAflatoxin B Lactone. <i>Journal of the American Chemical Society</i> , 1999 , 121, 3543-3544	16.4	126
238	C(sp(3))-F reductive elimination from alkylgold(iii) fluoride complexes. <i>Chemical Science</i> , 2012 , 3, 72-76	9.4	125

(2011-2015)

237	Enantioselective 1,1-arylborylation of alkenes: merging chiral anion phase transfer with Pd catalysis. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3213-3216	16.4	123
236	Syntheses of seven-membered rings: ruthenium-catalyzed intramolecular [5+2] cycloadditions. <i>Chemistry - A European Journal</i> , 2005 , 11, 2577-90	4.8	122
235	Asymmetric palladium-catalyzed directed intermolecular fluoroarylation of styrenes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4101-4	16.4	120
234	Photoinitiated oxidative addition of CF3I to gold(I) and facile aryl-CF3 reductive elimination. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7777-82	16.4	119
233	Palladium-Catalyzed Defluorinative Coupling of 1-Aryl-2,2-Difluoroalkenes and Boronic Acids: Stereoselective Synthesis of Monofluorostilbenes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11629-32	16.4	119
232	Enantioselective fluoroamination: 1,4-addition to conjugated dienes using anionic phase-transfer catalysis. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 7724-7	16.4	116
231	Regio- and enantioselective hydroamination of dienes by gold(I)/menthol cooperative catalysis. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9919-22	16.4	116
230	Asymmetric fluorination of Branched cyclohexanones enabled by a combination of chiral anion phase-transfer catalysis and enamine catalysis using protected amino acids. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5225-8	16.4	115
229	Synthesis of flinderoles B and C by a gold-catalyzed allene hydroarylation(). <i>Chemical Science</i> , 2011 , 2, 1706-1709	9.4	115
228	Palladium catalyzed kinetic and dynamic kinetic asymmetric transformations of gamma-acyloxybutenolides. Enantioselective total synthesis of (+)-Aflatoxin B1 and B2a. <i>Journal of the American Chemical Society</i> , 2003 , 125, 3090-100	16.4	114
227	A Comparison of Photocatalytic Activities of Gold Nanoparticles Following Plasmonic and Interband Excitation and a Strategy for Harnessing Interband Hot Carriers for Solution Phase Photocatalysis. <i>ACS Central Science</i> , 2017 , 3, 482-488	16.8	111
226	A Two-Component Catalyst System for Asymmetric Allylic Alkylations with Alcohol Pronucleophiles. Journal of the American Chemical Society, 1998 , 120, 12702-12703	16.4	111
225	Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18084-18092	16.4	110
224	A Re(V)-catalyzed C-N bond-forming route to human lipoxygenase inhibitors. <i>Organic Letters</i> , 2005 , 7, 2501-4	6.2	110
223	Direct asymmetric amination of Branched cyclic ketones catalyzed by a chiral phosphoric acid. Journal of the American Chemical Society, 2015 , 137, 3205-8	16.4	109
222	A combination of directing groups and chiral anion phase-transfer catalysis for enantioselective fluorination of alkenes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 13729-33	11.5	104
221	Enantioselective cyclizations of silyloxyenynes catalyzed by cationic metal phosphine complexes. Journal of the American Chemical Society, 2012 , 134, 2742-9	16.4	101
220	Enantioselective synthesis of cyclic carbamimidates via a three-component reaction of imines, terminal alkynes, and p-toluenesulfonylisocyanate using a monophosphine gold(I) catalyst(). <i>Chemical Science</i> , 2011 , 2, 1369-1378	9.4	99

219	An in situ directing group strategy for chiral anion phase-transfer fluorination of allylic alcohols. Journal of the American Chemical Society, 2014 , 136, 12864-7	16.4	98
218	Z-selective semihydrogenation of alkynes catalyzed by a cationic vanadium bisimido complex. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3900-3	16.4	98
217	Highly active heterogeneous palladium nanoparticle catalysts for homogeneous electrophilic reactions in solution and the utilization of a continuous flow reactor. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16771-3	16.4	98
216	Chiral Brfisted acid from a cationic gold(I) complex: catalytic enantioselective protonation of silyl enol ethers of ketones. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13248-51	16.4	98
215	Foundations and strategies of the construction of hybrid catalysts for optimized performances. <i>Nature Catalysis</i> , 2018 , 1, 318-325	36.5	97
214	Pd-catalyzed dynamic kinetic enantioselective arylation of silylphosphines. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15122-3	16.4	96
213	Enantioselective synthesis of gamma-hydroxyenones by chiral base-catalyzed Kornblum DeLaMare rearrangement. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12658-9	16.4	96
212	Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts. <i>Accounts of Chemical Research</i> , 2017 , 50, 1894-1901	24.3	94
211	Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. <i>Journal of the American Chemical Society</i> , 2014 , 136, 14409-12	16.4	93
210	Single-operation deracemization of 3H-indolines and tetrahydroquinolines enabled by phase separation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14090-3	16.4	92
209	Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel. <i>ChemSusChem</i> , 2015 , 8, 1726-36	8.3	90
208	Development and Analysis of a Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Acrylates Enabled by Chiral Anion Phase Transfer. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15877-158	16 .4	90
207	Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7645-9	11.5	90
206	Enantiodivergent Fluorination of Allylic Alcohols: Data Set Design Reveals Structural Interplay between Achiral Directing Group and Chiral Anion. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3863-75	16.4	89
205	A Pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: X-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13527-33	16.4	88
204	Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7083-6	16.4	86
203	Enantioselective reduction of ketones and imines catalyzed by (CN-box)Re(V)-oxo complexes. <i>Chemistry - A European Journal</i> , 2010 , 16, 9555-62	4.8	84
202	Chiral anion phase transfer of aryldiazonium cations: an enantioselective synthesis of C3-diazenated pyrroloindolines. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5600-3	16.4	83

201	Gold(I)-catalyzed enantioselective carboalkoxylation of alkynes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12600-3	16.4	83	
200	A step beyond the Feltham-Enemark notation: spectroscopic and correlated ab initio computational support for an antiferromagnetically coupled M(II)-(NO)- description of Tp*M(NO) (M = Co, Ni). <i>Journal of the American Chemical Society</i> , 2011 , 133, 18785-801	16.4	83	
199	Enabling New Modes of Reactivity via Constrictive Binding in a Supramolecular-Assembly-Catalyzed Aza-Prins Cyclization. <i>Journal of the American Chemical Society</i> , 2015 , 137, 9202-5	16.4	82	
198	Living ring-opening polymerization of N-sulfonylaziridines: synthesis of high molecular weight linear polyamines. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17616-7	16.4	81	
197	Palladium-catalyzed enantioselective 1,1-fluoroarylation of aminoalkenes. <i>Journal of the American Chemical Society</i> , 2015 , 137, 12207-10	16.4	80	
196	Stereoselective synthesis of vinylsilanes by a gold(I)-catalyzed acetylenic sila-cope rearrangement. Journal of the American Chemical Society, 2006 , 128, 11364-5	16.4	80	
195	Mechanistic dichotomy in CpRu(CH(3)CN)(3)PF(6) catalyzed enyne cycloisomerizations. <i>Journal of the American Chemical Society</i> , 2002 , 124, 5025-36	16.4	78	
194	A new Ru catalyst for alkene?alkyne coupling. <i>Tetrahedron Letters</i> , 1999 , 40, 7739-7743	2	78	
193	Enantioselective synthesis of cyclic ethers through a vanadium-catalyzed resolution/oxidative cyclization. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2096-9	16.4	77	
192	A Versatile Procedure for the Preparation of Aryl Thiocyanates Using N-Thiocyanatosuccinimide (NTS). <i>Synthetic Communications</i> , 1995 , 25, 1277-1286	1.7	77	
191	Synergistic Effects in Bimetallic Palladium-Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6805-12	16.4	77	
190	Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO Reduction at Modified Cu Surfaces. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7355-7364	16.4	76	
189	Gold(I)-Catalyzed 5-endo-dig Carbocyclization of Acetylenic Dicarbonyl Compounds. <i>Angewandte Chemie</i> , 2004 , 116, 5464-5466	3.6	76	
188	Gold(I)-Catalyzed Cyclizations of Silyl Enol Ethers: Application to the Synthesis of (+)-Lycopladine A. <i>Angewandte Chemie</i> , 2006 , 118, 6137-6140	3.6	75	
187	Scope and Mechanism of Cooperativity at the Intersection of Organometallic and Supramolecular Catalysis. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9682-93	16.4	74	
186	Conformational Selection as the Mechanism of Guest Binding in a Flexible Supramolecular Host. Journal of the American Chemical Society, 2017 , 139, 8013-8021	16.4	74	
185	Supported Au Nanoparticles with N-Heterocyclic Carbene Ligands as Active and Stable Heterogeneous Catalysts for Lactonization. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4144-4	1 ¹ 494	73	
184	Deoxygenation of Biomass-Derived Feedstocks: Oxorhenium-Catalyzed Deoxydehydration of Sugars and Sugar Alcohols. <i>Angewandte Chemie</i> , 2012 , 124, 8206-8210	3.6	73	

183	A New Route to the Synthesis of the Naturally Occurring Benzopentathiepin Varacin. <i>Journal of the American Chemical Society</i> , 1995 , 117, 7261-7262	16.4	73
182	Disparate Catalytic Scaffolds for Atroposelective Cyclodehydration. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6698-6705	16.4	72
181	Phosphonium Formation by Facile Carbon-Phosphorus Reductive Elimination from Gold(III). <i>Journal of the American Chemical Society</i> , 2016 , 138, 587-93	16.4	71
180	Gold(I)-catalyzed regioselective cyclizations of silyl ketene amides and carbamates with alkynes. <i>Journal of Organic Chemistry</i> , 2007 , 72, 6287-9	4.2	71
179	Parametrization of Non-covalent Interactions for Transition State Interrogation Applied to Asymmetric Catalysis. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6803-6806	16.4	69
178	Supramolecular Ga4L6(12-) Cage Photosensitizes 1,3-Rearrangement of Encapsulated Guest via Photoinduced Electron Transfer. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10128-31	16.4	69
177	Isolation and Reactivity of Trifluoromethyl Iodonium Salts. ACS Central Science, 2016, 2, 341-50	16.8	69
176	Mechanistic Investigations of the Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Benzyl Acrylates. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12688-12695	16.4	69
175	Ruthenium-Catalyzed Cycloisomerization of 1,6-Enynes Initiated by CH Activation. <i>Journal of the American Chemical Society</i> , 1999 , 121, 9728-9729	16.4	69
174	Halide-Dependent Mechanisms of Reductive Elimination from Gold(III). <i>Journal of the American Chemical Society</i> , 2015 , 137, 7921-8	16.4	68
173	A Ruthenium-Catalyzed Hydrative Cyclization and $[4 + 2]$ Cycloaddition of Yne-enones. <i>Journal of the American Chemical Society</i> , 2000 , 122, 5877-5878	16.4	68
172	In situ IR and X-ray high spatial-resolution microspectroscopy measurements of multistep organic transformation in flow microreactor catalyzed by Au nanoclusters. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3624-9	16.4	66
171	Reduction of Aryl Thiocyanates with SmI(2) and Pd-Catalyzed Coupling with Aryl Halides as a Route to Mixed Aryl Sulfides. <i>Journal of Organic Chemistry</i> , 1996 , 61, 7677-7680	4.2	65
170	Gold Catalysis. Catalytic Science Series, 2014 ,	0.4	65
169	Advances in supramolecular host-mediated reactivity. <i>Nature Catalysis</i> , 2020 , 3, 969-984	36.5	65
168	Enantioselective, Stereodivergent Hydroazidation and Hydroamination of Allenes Catalyzed by Acyclic Diaminocarbene (ADC) Gold(I) Complexes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6079-83	16.4	65
167	A catalytic fluoride-rebound mechanism for C(sp)-CF bond formation. <i>Science</i> , 2017 , 356, 1272-1276	33.3	64
166	Gold(I)-catalyzed enantioselective bromocyclization reactions of allenes. <i>Chemical Science</i> , 2013 , 4, 342	279.4	63

(2012-2017)

165	Well-Defined Chiral Gold(III) Complex Catalyzed Direct Enantioconvergent Kinetic Resolution of 1,5-Enynes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11016-11019	16.4	63	
164	Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels. <i>Nature Protocols</i> , 2015 , 10, 528-37	18.8	61	
163	Gold Catalysed Redox Synthesis of Imidazo[1,2-]pyridine using Pyridine -Oxide and Alkynes. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 687-691	5.6	61	
162	Ruthenium-Catalyzed Olefin Cross Metathesis of Styrenes as an Alternative to the Heck and Cross-Coupling Reactions. <i>Advanced Synthesis and Catalysis</i> , 2002 , 344, 634	5.6	61	
161	Application of Fundamental Organometallic Chemistry to the Development of a Gold-Catalyzed Synthesis of Sulfinate Derivatives. <i>Angewandte Chemie</i> , 2014 , 126, 4493-4496	3.6	59	
160	Functional group diversity by ruthenium-catalyzed olefin cross-metathesis. <i>Pure and Applied Chemistry</i> , 2002 , 74, 7-10	2.1	58	
159	Parameterization of Acyclic Diaminocarbene Ligands Applied to a Gold(I)-Catalyzed Enantioselective Tandem Rearrangement/Cyclization. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12943-12946	16.4	57	
158	Ruthenium-catalyzed enyne cycloisomerizations. Effect of allylic silyl ether on regioselectivity. Journal of the American Chemical Society, 2004 , 126, 15592-602	16.4	57	
157	Synthesis of 1,1-disubstituted alkenes via a Ru-catalyzed addition. <i>Journal of the American Chemical Society</i> , 2001 , 123, 12504-9	16.4	56	
156	Uncovering Subtle Ligand Effects of Phosphines Using Gold(I) Catalysis. <i>ACS Catalysis</i> , 2017 , 7, 3973-39	78 3.1	55	
155	The development and mechanistic investigation of a palladium-catalyzed 1,3-arylfluorination of chromenes. <i>Chemical Science</i> , 2017 , 8, 2890-2897	9.4	54	
154	The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations. <i>Chemical Science</i> , 2015 , 6, 1383-1393	9.4	54	
153	Polymer-Encapsulated Metallic Nanoparticles as a Bridge Between Homogeneous and Heterogeneous Catalysis. <i>Catalysis Letters</i> , 2015 , 145, 126-138	2.8	53	
152	Gold Catalysis Esteadily Increasing in Importance. Advanced Synthesis and Catalysis, 2016, 358, 1347-134	1 7 5.6	53	
151	Catalytic upgrading of biomass-derived methyl ketones to liquid transportation fuel precursors by an organocatalytic approach. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4673-7	16.4	52	
150	Homogeneous Gold Redox Chemistry: Organometallics, Catalysis, and Beyond. <i>Trends in Chemistry</i> , 2020 , 2, 707-720	14.8	51	
149	Gold(I)-Catalyzed Enantioselective Desymmetrization of 1,3-Diols through Intramolecular Hydroalkoxylation of Allenes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14447-51	16.4	50	
148	A Doubly Axially Chiral Phosphoric Acid Catalyst for the Asymmetric Tandem Oxyfluorination of Enamides. <i>Angewandte Chemie</i> , 2012 , 124, 9822-9826	3.6	50	

147	Asymmetric addition of Ebranched cyclic ketones to allenamides catalyzed by a chiral phosphoric acid. <i>Chemical Science</i> , 2016 , 7, 2653-2656	9.4	49
146	Gold-Catalyzed Allylation of Aryl Boronic Acids: Accessing Cross-Coupling Reactivity with Gold. <i>Angewandte Chemie</i> , 2014 , 126, 6325-6329	3.6	49
145	Gold(I)-Catalyzed Desymmetrization of 1,4-Dienes by an Enantioselective Tandem Alkoxylation/Claisen Rearrangement. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8529-32	16.4	49
144	Biomimetic Approach to the Catalytic Enantioselective Synthesis of Flavonoids. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9775-8	16.4	49
143	Deconvoluting the Role of Charge in a Supramolecular Catalyst. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6591-6595	16.4	49
142	Chemocatalytic upgrading of tailored fermentation products toward biodiesel. <i>ChemSusChem</i> , 2014 , 7, 2445-8	8.3	47
141	Enantioselective Palladium-Catalyzed Oxidative Fluoroarylation of Junsaturated Carbonyl Derivatives. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9045-9	16.4	47
140	Hydrogen Gas-Mediated Deoxydehydration/Hydrogenation of Sugar Acids: Catalytic Conversion of Glucarates to Adipates. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14001-14004	16.4	46
139	A Nucleophilic Strategy for Enantioselective Intermolecular Hamination: Access to Enantioenriched Harylamino Ketones. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7632-5	16.4	46
138	Harnessing Noncovalent Interactions in Dual-Catalytic Enantioselective Heck-Matsuda Arylation. Journal of the American Chemical Society, 2019 , 141, 998-1009	16.4	46
137	Enantioselective Heck-Matsuda Arylations through Chiral Anion Phase-Transfer of Aryl Diazonium Salts. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5806-5811	16.4	45
136	Synthesis of (-)-octalactin a by a strategic vanadium-catalyzed oxidative kinetic resolution. Angewandte Chemie - International Edition, 2008, 47, 3755-8	16.4	45
135	Regio- and Enantioselective Hydroamination of Dienes by Gold(I)/Menthol Cooperative Catalysis. <i>Angewandte Chemie</i> , 2011 , 123, 10093-10096	3.6	44
134	Enantioselective construction of remote tertiary carbon-fluorine bonds. <i>Nature Chemistry</i> , 2019 , 11, 710	0 -17/16	42
133	Inorganic micelles as efficient and recyclable micellar catalysts. <i>Nano Letters</i> , 2014 , 14, 379-83	11.5	42
132	Expanding the Scope of Biomass-Derived Chemicals through Tandem Reactions Based on Oxorhenium-Catalyzed Deoxydehydration. <i>Angewandte Chemie</i> , 2013 , 125, 13143-13147	3.6	41
131	Cobalt dinitrosoalkane complexes in the C-H functionalization of olefins. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3777-9	16.4	41
130	Gold-Catalyzed Hydrofluorination of Electron-Deficient Alkynes: Stereoselective Synthesis of -Fluoro Michael Acceptors. <i>ACS Catalysis</i> , 2018 , 8, 5947-5951	13.1	40

129	Preparation and reactivity of terminal gold(I) amides and phosphides. Chemical Science, 2013, 4, 1023-1	03.74	40	
128	Palladium-Catalyzed Defluorinative Coupling of 1-Aryl-2,2-Difluoroalkenes and Boronic Acids: Stereoselective Synthesis of Monofluorostilbenes. <i>Angewandte Chemie</i> , 2016 , 128, 11801-11804	3.6	40	
127	A Supramolecular Strategy for Selective Catalytic Hydrogenation Independent of Remote Chain Length. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11806-11810	16.4	39	
126	Tandem Cycloisomerization/Suzuki Coupling of Arylethynyl MIDA Boronates. <i>Tetrahedron</i> , 2011 , 67, 43	0 <u>6-4</u> 31	1235	
125	Mechanism of Photoredox-Initiated C-C and C-N Bond Formation by Arylation of IPrAu(I)-CF and IPrAu(I)-Succinimide. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4308-4315	16.4	34	
124	Supramolecular Host-Selective Activation of Iodoarenes by Encapsulated Organometallics. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1701-1706	16.4	33	
123	Regio- and Enantioselective Bromocyclization of Difluoroalkenes as a Strategy to Access Tetrasubstituted Difluoromethylene-Containing Stereocenters. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8946-8952	16.4	33	
122	A Physical Organic Approach to Tuning Reagents for Selective and Stable Methionine Bioconjugation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12657-12662	16.4	33	
121	Enantioselective Fluoroamination: 1,4-Addition to Conjugated Dienes Using Anionic Phase-Transfer Catalysis. <i>Angewandte Chemie</i> , 2013 , 125, 7878-7881	3.6	33	
120	Enantioselective Synthesis of Fluoro-Dihydroquinazolones and -Benzooxazinones by Fluorination-Initiated Asymmetric Cyclization Reactions. <i>ACS Catalysis</i> , 2015 , 6, 151-154	13.1	32	
119	Ligand-based carbon-nitrogen bond forming reactions of metal dinitrosyl complexes with alkenes and their application to C-H bond functionalization. <i>Accounts of Chemical Research</i> , 2014 , 47, 517-29	24.3	32	
118	Metal Nanoparticles Catalyzed Selective Carbon-Carbon Bond Activation in the Liquid Phase. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8533-7	16.4	31	
117	Combining microbial production with chemical upgrading. <i>Current Opinion in Biotechnology</i> , 2016 , 38, 47-53	11.4	31	
116	Direct Michael addition of alkenes via a cobalt-dinitrosyl mediated vinylic C-H functionalization reaction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10787-9	16.4	31	
115	An atom-economical three-carbon chain extension of alkynes to form E-enol silanes. <i>Journal of the American Chemical Society</i> , 2001 , 123, 2897-8	16.4	30	
114	Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors. <i>Metabolic Engineering</i> , 2014 , 25, 124-30	9.7	29	
113	Chiral Anion Phase Transfer of Aryldiazonium Cations: An Enantioselective Synthesis of C3-Diazenated Pyrroloindolines. <i>Angewandte Chemie</i> , 2014 , 126, 5706-5709	3.6	29	
112	Carbon monoxide, isocyanide, and nitrile complexes of cationic, d(0) vanadium bisimides: Eback bonding derived from the Bymmetry, bonding metal bisimido ligand orbitals. <i>Inorganic Chemistry</i> , 2012, 51, 13334,44	5.1	29	

111	Chiral Diaryliodonium Phosphate Enables Light Driven Diastereoselective EC(sp)-H Acetalization. Journal of the American Chemical Society, 2018 , 140, 8350-8356	16.4	29
110	ABE Condensation over Monometallic Catalysts: Catalyst Characterization and Kinetics. <i>ChemCatChem</i> , 2017 , 9, 677-684	5.2	28
109	Enantioselective Allenoate-Claisen Rearrangement Using Chiral Phosphate Catalysts. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6390-6399	16.4	28
108	A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid Oℍ bond insertion. <i>Nature Catalysis</i> , 2021 , 4, 523-531	36.5	28
107	Z-Selective Semihydrogenation of Alkynes Catalyzed by a Cationic Vanadium Bisimido Complex. <i>Angewandte Chemie</i> , 2011 , 123, 3986-3989	3.6	27
106	Upgrading Lignocellulosic Products to Drop-In Biofuels via Dehydrogenative Cross-Coupling and Hydrodeoxygenation Sequence. <i>ChemSusChem</i> , 2015 , 8, 2609-14	8.3	26
105	Migratory Insertion of Carbenes into Au(III)-C Bonds. <i>Journal of the American Chemical Society</i> , 2018 , 140, 466-474	16.4	25
104	Production of renewable lubricants via self-condensation of methyl ketones. <i>Green Chemistry</i> , 2016 , 18, 3577-3581	10	25
103	Catalytic Dynamic Kinetic Resolutions in Tandem to Construct Two-Axis Terphenyl Atropisomers. Journal of the American Chemical Society, 2020 , 142, 16461-16470	16.4	25
102	Enantioselective Synthesis of N,S-Acetals by an Oxidative Pummerer-Type Transformation using Phase-Transfer Catalysis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 589-593	16.4	25
101	Synthesis of Biomass-Derived Ethers for Use as Fuels and Lubricants. <i>ChemSusChem</i> , 2019 , 12, 2835-285	58 .3	24
100	Cobalt-mediated, enantioselective synthesis of C(2) and C(1) dienes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16365-7	16.4	24
99	Cobalt-mediated [3 + 2]-annulation reaction of alkenes with alpha, beta-unsaturated ketones and imines. <i>Organic Letters</i> , 2009 , 11, 3698-700	6.2	24
98	Flexible NO -Functionalized N-Heterocyclic Carbene Monolayers on Au (111) Surface. <i>Chemistry - A European Journal</i> , 2019 , 25, 15067-15072	4.8	23
97	Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14080-14084	16.4	23
96	Synthesis of Stable Gold(III) Pincer Complexes with Anionic Heteroatom Donors. <i>Organometallics</i> , 2014 , 33, 4169-4172	3.8	22
95	Strategies for remote enantiocontrol in chiral gold(iii) complexes applied to catalytic enantioselective IDiels-Alder reactions. <i>Chemical Science</i> , 2020 , 11, 6450-6456	9.4	21
94	A versatile synthetic route to 1,5-dithiocins from o-mercapto aromatic aldehydes. <i>Canadian Journal of Chemistry</i> , 1999 , 77, 113-121	0.9	21

93	Effect of Alcohol Structure on the Kinetics of Etherification and Dehydration over Tungstated Zirconia. <i>ChemSusChem</i> , 2018 , 11, 3104-3111	8.3	20
92	Synthesis of the First (1-3:6,7-eta-Cyclodecadienyl)ruthenium Complex by the Intramolecular Reaction of an Alkene and a Vinylcyclopropane We thank the National Science Foundation and the National Institutes of Health (NIH), General Medical Sciences, for their generous support of our	16.4	20
91	A Nanovessel-Catalyzed Three-Component Aza-Darzens Reaction. <i>Journal of the American Chemical Society</i> , 2020 , 142, 733-737	16.4	20
90	Elucidating the Influence of Anchoring Geometry on the Reactivity of NO-Functionalized N-Heterocyclic Carbene Monolayers. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 5099-5104	6.4	19
89	Gold(I)-catalyzed enantioselective [3+2] and [3+3] cycloaddition reactions of propargyl acetals/ketals. <i>Tetrahedron</i> , 2015 , 71, 5800-5805	2.4	19
88	Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks. <i>CheM</i> , 2020 , 6, 142-152	16.2	19
87	A Dinuclear Mechanism Implicated in Controlled Carbene Polymerization. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6473-6478	16.4	18
86	Enantioselective fluorination of homoallylic alcohols enabled by the tuning of non-covalent interactions. <i>Chemical Science</i> , 2018 , 9, 7153-7158	9.4	18
85	Identifying site-dependent reactivity in oxidation reactions on single Pt particles. <i>Chemical Science</i> , 2018 , 9, 6523-6531	9.4	18
84	Mechanism and Kinetics of Isobutene Formation from Ethanol and Acetone over ZnxZryOz. <i>ACS Catalysis</i> , 2019 , 9, 10588-10604	13.1	18
83	Mechanism and kinetics of 1-dodecanol etherification over tungstated zirconia. <i>Journal of Catalysis</i> , 2017 , 354, 13-23	7.3	18
82	Enantioselective cyclization of enamide-ynes and application to the synthesis of the kopsifoline core. <i>Tetrahedron</i> , 2013 , 69, 5640-5646	2.4	18
81	Selectivity tuning over monometallic and bimetallic dehydrogenation catalysts: effects of support and particle size. <i>Catalysis Science and Technology</i> , 2018 , 8, 314-327	5.5	18
80	Gold(I)-Catalyzed Desymmetrization of 1,4-Dienes by an Enantioselective Tandem Alkoxylation/Claisen Rearrangement. <i>Angewandte Chemie</i> , 2015 , 127, 8649-8652	3.6	17
79	Enantioselective, Stereodivergent Hydroazidation and Hydroamination of Allenes Catalyzed by Acyclic Diaminocarbene (ADC) Gold(I) Complexes. <i>Angewandte Chemie</i> , 2016 , 128, 6183-6187	3.6	17
78	New Insights into Aldol Reactions of Methyl Isocyanoacetate Catalyzed by Heterogenized Homogeneous Catalysts. <i>Nano Letters</i> , 2017 , 17, 584-589	11.5	16
77	Site-selective acylation of natural products with BINOL-derived phosphoric acids. <i>ACS Catalysis</i> , 2019 , 9, 9794-9799	13.1	16
76	Enantioselective Palladium-Catalyzed Oxidative IFluoroarylation of Insturated Carbonyl Derivatives. <i>Angewandte Chemie</i> , 2016 , 128, 9191-9195	3.6	15

75	Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 5733-5740	11.5	13
74	Gold(I)-Catalyzed Enantioselective Desymmetrization of 1,3-Diols through Intramolecular Hydroalkoxylation of Allenes. <i>Angewandte Chemie</i> , 2015 , 127, 14655-14659	3.6	13
73	Gold catalysis for organic synthesis. Beilstein Journal of Organic Chemistry, 2011, 7, 553-4	2.5	13
72	Synthesis of [RuCl2(NO)2(THF)] and its double C-N bond-forming reactions with alkenes. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 4484-7	16.4	13
71	Enantioselective Synthesis of Cyclic Ethers through a Vanadium-Catalyzed Resolution/Oxidative Cyclization. <i>Angewandte Chemie</i> , 2006 , 118, 2150-2153	3.6	13
70	Protein-like proton exchange in a synthetic host cavity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 15303-7	11.5	12
69	Gold-Catalyzed Reactions of Propargyl Esters, Propargyl Alcohols, and Related Compounds 2012 , 75-13	34	12
68	Hydration and Hydroalkoxylation of CC Multiple Bonds 2012 , 201-235		12
67	[(TMEDA)Co(NO)2][BPh4]: A versatile synthetic entry point to four and five coordinate {Co(NO)2}10 complexes. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 3974-3981	2.3	12
66	Enantioselective Kinetic Resolution/Desymmetrization of -Quinols: A Case Study in Boronic-Acid-Directed Phosphoric Acid Catalysis. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 295-301	5.6	12
65	Data Science Meets Physical Organic Chemistry. Accounts of Chemical Research, 2021,	24.3	12
64	Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 2079-87	4.9	11
63	Gold-Catalyzed Aldol and Related Reactions 2012 , 237-261		11
62	Strong Metal-Adsorbate Interactions Increase the Reactivity and Decrease the Orientational Order of OH-Functionalized N-Heterocyclic Carbene Monolayers. <i>Langmuir</i> , 2020 , 36, 697-703	4	11
61	Controlled Single-Electron Transfer via Metal-Ligand Cooperativity Drives Divergent Nickel-Electrocatalyzed Radical Pathways. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6990-70	016.4	11
60	CO reduction on pure Cu produces only H after subsurface O is depleted: Theory and experiment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	11
59	Enantioselective HeckMatsuda Arylations through Chiral Anion Phase-Transfer of Aryl Diazonium Salts. <i>Angewandte Chemie</i> , 2017 , 129, 5900-5905	3.6	10
58	Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. <i>Angewandte Chemie</i>	16.4	10

57	GoldAlkene Complexes 2012 , 175-199		10
56	Chemoselective and Site-Selective Reductions Catalyzed by a Supramolecular Host and a Pyridine-Borane Cofactor. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2108-2114	16.4	10
55	A divergent/convergent approach to dolabriferol: the Kornblum DeLaMare enantiomeric resolution. <i>Tetrahedron Letters</i> , 2015 , 56, 3643-3646	2	9
54	Catalytic Upgrading of Biomass-Derived Methyl Ketones to Liquid Transportation Fuel Precursors by an Organocatalytic Approach. <i>Angewandte Chemie</i> , 2015 , 127, 4756-4760	3.6	9
53	GoldAlkyne Complexes 2012 , 153-173		9
52	An Activity-Based Methionine Bioconjugation Approach To Developing Proximity-Activated Imaging Reporters. <i>ACS Central Science</i> , 2020 , 6, 32-40	16.8	9
51	Electrochemical deposition of N-heterocyclic carbene monolayers on metal surfaces. <i>Nature Communications</i> , 2020 , 11, 5714	17.4	9
50	Heterogeneous Supramolecular Catalysis through Immobilization of Anionic ML Assemblies on Cationic Polymers. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19327-19338	16.4	9
49	Vanadium bisimide bonding investigated by X-ray crystallography, 51V and 13C nuclear magnetic resonance spectroscopy, and V L(3,2)-edge X-ray absorption near-edge structure spectroscopy. <i>Inorganic Chemistry</i> , 2013 , 52, 11650-60	5.1	8
48	An isolated water droplet in the aqueous solution of a supramolecular tetrahedral cage. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 32954-32961	11.5	8
47	Generation of Axially Chiral Fluoroallenes through a Copper-Catalyzed Enantioselective Fluoride Elimination. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13759-13768	16.4	8
46	Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. <i>Angewandte Chemie</i> , 2017 , 129, 14268-14272	3.6	7
45	Gold catalysis for organic synthesis II. Beilstein Journal of Organic Chemistry, 2013, 9, 2040-1	2.5	7
44	Cluster Preface: Gold Catalysis for Organic Synthesis: Opportunities Abound. <i>Synlett</i> , 2012 , 2012, 46-48	2.2	7
43	Measuring ion-pairing and hydration in variable charge supramolecular cages with microwave microfluidics. <i>Communications Chemistry</i> , 2019 , 2,	6.3	6
42	Enantioselective Synthesis of N,S-Acetals by an Oxidative Pummerer-Type Transformation using Phase-Transfer Catalysis. <i>Angewandte Chemie</i> , 2018 , 130, 598-602	3.6	6
41	Intramolecular Hydroarylation of Alkynes 2012 , 135-152		6
40	Backbone-Photodegradable Polymers by Incorporating Acylsilane Monomers via Ring-Opening Metathesis Polymerization. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17920-17925	16.4	6

39	Profiling the Proteome-Wide Selectivity of Diverse Electrophiles		6
38	Hybrid Biological Themical Approach Offers Flexibility and Reduces the Carbon Footprint of Biobased Plastics, Rubbers, and Fuels. ACS Sustainable Chemistry and Engineering, 2018, 6, 14523-14532	8.3	6
37	Site-dependent selectivity in oxidation reactions on single Pt nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 18765-18769	3.6	5
36	Asymmetric Synthesis Enabled by Organometallic Complexes. <i>Organometallics</i> , 2019 , 38, 3899-3901	3.8	5
35	Gold-Catalyzed Oxygen-Atom Transfer to Alkynes 2012 , 273-296		5
34	Hydrochlorination of Acetylene Catalyzed by Gold 2012 , 1-26		5
33	SONICATION AND ALUMINUM AMALGAM IN THE LEIMGRUBER-BATCHO REACTION. AN IMPROVED PREPARATION OF 6-AMINOINDOLE. <i>Organic Preparations and Procedures International</i> , 1995 , 27, 576-579	1.1	5
32	Approaching 100% Selectivity at Low Potential on Ag for Electrochemical CO2 Reduction to CO Using a Surface Additive. <i>ACS Catalysis</i> , 2021 , 11, 9034-9042	13.1	5
31	Photo-Brook rearrangement of acyl silanes as a strategy for photoaffinity probe design <i>Chemical Science</i> , 2022 , 13, 3851-3856	9.4	5
30	Enantioselective Gold-Catalyzed Synthesis of Heterocyclic Compounds. <i>Topics in Heterocyclic Chemistry</i> , 2015 , 227-248	0.2	4
29	Applications of Gold-Catalyzed Reactions to Natural Product Synthesis 2012 , 331-362		4
28	A SIMPLE METHOD FOR THE SELECTIVE MOM PROTECTION OF THIOLS. <i>Synlett</i> , 1995 , 1995, 159-160	2.2	4
27	Gold-Catalyzed Addition Reactions to Allenes 2012 , 363-389		3
26	Synthesis of the First (1-3:6,7-ECyclodecadienyl)ruthenium Complex by the Intramolecular Reaction of an Alkene and a Vinylcyclopropane. <i>Angewandte Chemie</i> , 2001 , 113, 1148-1150	3.6	3
25	Using silyl protecting group to enable post-deposition C-C coupling reactions of alkyne-functionalized N-heterocyclic carbene monolayers on Au surfaces. <i>Chemical Communications</i> , 2021 , 57, 5342-5345	5.8	3
24	Cooperative Stereoinduction in Asymmetric Photocatalysis <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	3
23	Revisiting the Bonding Model for Gold(I) Species: The Importance of Pauli Repulsion Revealed in a Gold(I)-Cyclobutadiene Complex <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	3
22	Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. <i>Angewandte Chemie</i> , 2020 , 132, 14755-14763	3.6	2

21	GOLD CATALYSIS IN NATURAL PRODUCT SYNTHESIS. Catalytic Science Series, 2014, 501-536	0.4	2
20	Gold-Catalyzed Benzannulations: AsaoNamamoto Benzopyrylium Pathway 2012 , 55-73		2
19	Gold-Catalyzed Reduction Reactions 2012 , 27-54		2
18	Gold-Catalyzed Additions to Alkenes: N-Nucleophiles 2012 , 297-302		2
17	The interface is a tunable dimension in electricity-driven organic synthesis. <i>Natural Sciences</i> , 2021 , 1, e20210036		2
16	Site-Independent Hydrogenation Reactions on Oxide-Supported Au Nanoparticles Facilitated by Intraparticle Hydrogen Atom Diffusion. <i>ACS Catalysis</i> , 2021 , 11, 9875-9884	13.1	2
15	Zirconium-Redox-Shuttled Cross-Electrophile Coupling of Aromatic and Heteroaromatic Halides. <i>CheM</i> , 2021 , 7, 1963-1974	16.2	2
14	Synthesis of -trifluoromethyl amides from carboxylic acids <i>CheM</i> , 2021 , 7, 2245-2255	16.2	2
13	Beyond Allylic Alkylation: Applications of Trost Chemistry in Complex Molecule Synthesis. <i>Israel Journal of Chemistry</i> , 2021 , 61, 340-366	3.4	2
12	The Chemistry of Gold Fluoride Complexes 2014 , 1-18		1
11	Gold-Catalyzed Additions to Alkenes: O-Nucleophiles 2012 , 303-307		1
10	Oxidation of Alcohols and Carbohydrates 2012 , 309-329		1
9	The intramolecular sila-Pummerer cyclization: A new route to sulfur heterocycles. <i>Heteroatom Chemistry</i> , 1994 , 5, 251-257	1.2	1
8	Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation		1
7	Asymmetric Fluorination Reactions 2021 , 241-280		1
6	Gold-Catalyzed Oxidation Reactions: Oxidation of Alkenes 2012 , 263-272		O
5	Staphylococcus aureus Peptide Methionine Sulfoxide Reductases Protect from Human Whole-Blood Killing. <i>Infection and Immunity</i> , 2021 , 89, e0014621	3.7	О
4	Catalytic, Enantioselective Fluorination Reactions 2019 , 749-800		

_	Flexible NO -Functionalized N-Heterocyclic Carbene Monolayers on Au(111) Surface. <i>Chemistry - A</i>
3	European Journal, 2019 , 25, 15009

4.8

Synthesis of [RuCl2(NO)2(THF)] and its Double C?N Bond-Forming Reactions with Alkenes.

Angewandte Chemie, **2011**, 123, 4576-4579

3.6

ASYMMETRIC PHASE-TRANSFER AND ION-PAIR ORGANOCATALYSES **2022**, 117-156