Francisco Dean Toste

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1445809/publications.pdf

Version: 2024-02-01

354 papers

48,829 citations

134 h-index 1934

523 all docs 523 docs citations

523 times ranked 24032 citing authors

g-index

#	Article	IF	Citations
1	Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 2008, 108, 3351-3378.	47.7	1,966
2	Relativistic effects in homogeneous gold catalysis. Nature, 2007, 446, 395-403.	27.8	1,709
3	Advances in Catalytic Enantioselective Fluorination, Mono-, Di-, and Trifluoromethylation, and Trifluoromethylthiolation Reactions. Chemical Reviews, 2015, 115, 826-870.	47.7	1,179
4	Supramolecular Catalysis in Metal–Ligand Cluster Hosts. Chemical Reviews, 2015, 115, 3012-3035.	47.7	1,021
5	A Powerful Chiral Counterion Strategy for Asymmetric Transition Metal Catalysis. Science, 2007, 317, 496-499.	12.6	838
6	Non-Metathesis Ruthenium-Catalyzed Câ^'C Bond Formation. Chemical Reviews, 2001, 101, 2067-2096.	47.7	756
7	The progression of chiral anions from concepts to applications in asymmetric catalysis. Nature Chemistry, 2012, 4, 603-614.	13.6	703
8	Exploiting non-covalent π interactions for catalyst design. Nature, 2017, 543, 637-646.	27.8	583
9	Gold(I)-Catalyzed Stereoselective Olefin Cyclopropanation. Journal of the American Chemical Society, 2005, 127, 18002-18003.	13.7	507
10	Gold(I)-Catalyzed Intramolecular Acetylenic Schmidt Reaction. Journal of the American Chemical Society, 2005, 127, 11260-11261.	13.7	497
11	Modern Approaches for Asymmetric Construction of Carbonâ€"Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chemical Reviews, 2018, 118, 3887-3964.	47.7	476
12	Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst. Science, 2011, 334, 1681-1684.	12.6	455
13	Development of Catalysts and Ligands for Enantioselective Gold Catalysis. Accounts of Chemical Research, 2014, 47, 889-901.	15.6	455
14	A bonding model for gold(I) carbene complexes. Nature Chemistry, 2009, 1, 482-486.	13.6	451
15	Gold(I)-Catalyzed Enantioselective Intramolecular Hydroamination of Allenes. Journal of the American Chemical Society, 2007, 129, 2452-2453.	13.7	439
16	Recent advances in enantioselective gold catalysis. Chemical Society Reviews, 2016, 45, 4567-4589.	38.1	439
17	Gold(I)-Catalyzed Conia-Ene Reaction of \hat{I}^2 -Ketoesters with Alkynes. Journal of the American Chemical Society, 2004, 126, 4526-4527.	13.7	418
18	Synthesis of 2-Cyclopentenones by Gold(I)-Catalyzed Rautenstrauch Rearrangement. Journal of the American Chemical Society, 2005, 127, 5802-5803.	13.7	406

#	Article	IF	Citations
19	A supramolecular microenvironment strategy for transition metal catalysis. Science, 2015, 350, 1235-1238.	12.6	401
20	Dual Visible Light Photoredox and Gold-Catalyzed Arylative Ring Expansion. Journal of the American Chemical Society, 2014, 136, 5844-5847.	13.7	376
21	Rearrangement of Alkynyl Sulfoxides Catalyzed by Gold(I) Complexes. Journal of the American Chemical Society, 2007, 129, 4160-4161.	13.7	354
22	Redox-based reagents for chemoselective methionine bioconjugation. Science, 2017, 355, 597-602.	12.6	353
23	Catalaytic Isomerization of 1,5-Enynes to Bicyclo[3.1.0]hexenes. Journal of the American Chemical Society, 2004, 126, 10858-10859.	13.7	350
24	Gold(I)-Catalyzed Propargyl Claisen Rearrangement. Journal of the American Chemical Society, 2004, 126, 15978-15979.	13.7	344
25	Integration of chemical catalysis with extractive fermentation to produce fuels. Nature, 2012, 491, 235-239.	27.8	327
26	Gold(I)-Catalyzed Oxidative Rearrangements. Journal of the American Chemical Society, 2007, 129, 5838-5839.	13.7	321
27	Nonâ€Oxidative Vanadiumâ€Catalyzed CO Bond Cleavage: Application to Degradation of Lignin Model Compounds. Angewandte Chemie - International Edition, 2010, 49, 3791-3794.	13.8	313
28	A supramolecular approach to combining enzymatic and transition metal catalysis. Nature Chemistry, 2013, 5, 100-103.	13.6	312
29	Regio- and Enantioselective Allylic Alkylation of an Unsymmetrical Substrate:  A Working Model. Journal of the American Chemical Society, 1999, 121, 4545-4554.	13.7	311
30	Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond. CheM, 2016, 1, $32-58$.	11.7	297
31	Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts. Accounts of Chemical Research, 2018, 51, 2447-2455.	15.6	292
32	Gold-Catalyzed Cycloisomerization of 1,5-Allenynes via Dual Activation of an Ene Reaction. Journal of the American Chemical Society, 2008, 130, 4517-4526.	13.7	281
33	Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nature Chemistry, 2010, 2, 36-41.	13.6	277
34	Gold(I) atalyzed Enantioselective Synthesis of Pyrazolidines, Isoxazolidines, and Tetrahydrooxazines. Angewandte Chemie - International Edition, 2010, 49, 598-601.	13.8	272
35	Gold-Catalyzed Three-Component Coupling: Oxidative Oxyarylation of Alkenes. Journal of the American Chemical Society, 2010, 132, 8885-8887.	13.7	267
36	Gold(I)-Catalyzed [2 + 2]-Cycloaddition of Allenenes. Journal of the American Chemical Society, 2007, 129, 12402-12403.	13.7	265

#	Article	IF	Citations
37	Goldâ€Catalyzed Intramolecular Aminoarylation of Alkenes: CC Bond Formation through Bimolecular Reductive Elimination. Angewandte Chemie - International Edition, 2010, 49, 5519-5522.	13.8	264
38	Stable gold(III) catalysts by oxidative addition of a carbon–carbon bond. Nature, 2015, 517, 449-454.	27.8	261
39	Gold(I)-Catalyzed 5-endo-dig Carbocyclization of Acetylenic Dicarbonyl Compounds. Angewandte Chemie - International Edition, 2004, 43, 5350-5352.	13.8	251
40	Synthesis of Aromatic Ketones by a Transition Metal-Catalyzed Tandem Sequence. Journal of the American Chemical Society, 2006, 128, 7436-7437.	13.7	247
41	Phosphine-Catalyzed Hydration and Hydroalkoxylation of Activated Olefins:Â Use of a Strong Nucleophile to Generate a Strong Base. Journal of the American Chemical Society, 2003, 125, 8696-8697.	13.7	242
42	Gold(I)-Catalyzed Cyclizations of Silyl Enol Ethers: Application to the Synthesis of (+)-Lycopladine A. Angewandte Chemie - International Edition, 2006, 45, 5991-5994.	13.8	241
43	Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation. Journal of the American Chemical Society, 2009, 131, 2056-2057.	13.7	241
44	Enantioselective Halocyclization Using Reagents Tailored for Chiral Anion Phase-Transfer Catalysis. Journal of the American Chemical Society, 2012, 134, 12928-12931.	13.7	238
45	Ligand-Controlled Access to $[4+2]$ and $[4+3]$ Cycloadditions in Gold-Catalyzed Reactions of Allene-Dienes. Journal of the American Chemical Society, 2009, 131, 6348-6349.	13.7	234
46	Application of Fundamental Organometallic Chemistry to the Development of a Goldâ€Catalyzed Synthesis of Sulfinate Derivatives. Angewandte Chemie - International Edition, 2014, 53, 4404-4407.	13.8	231
47	Synthesis of Azepines by a Gold-Catalyzed Intermolecular [4 + 3]-Annulation. Journal of the American Chemical Society, 2008, 130, 9244-9245.	13.7	229
48	Photoredox Catalysis Unlocks Single-Electron Elementary Steps in Transition Metal Catalyzed Cross-Coupling. ACS Central Science, 2016, 2, 293-301.	11.3	224
49	Gold(I)-Catalyzed Enantioselective Ring Expansion of Allenylcyclopropanols. Journal of the American Chemical Society, 2009, 131, 9178-9179.	13.7	222
50	Chiral Anion Phase-Transfer Catalysis Applied to the Direct Enantioselective Fluorinative Dearomatization of Phenols. Journal of the American Chemical Society, 2013, 135, 1268-1271.	13.7	222
51	Ruthenium-Catalyzed Intramolecular [5 + 2] Cycloadditions. Journal of the American Chemical Society, 2000, 122, 2379-2380.	13.7	221
52	Asymmetric O- and C-Alkylation of Phenols. Journal of the American Chemical Society, 1998, 120, 815-816.	13.7	220
53	Deoxygenation of Biomassâ€Derived Feedstocks: Oxorheniumâ€Catalyzed Deoxydehydration of Sugars and Sugar Alcohols. Angewandte Chemie - International Edition, 2012, 51, 8082-8086.	13.8	220
54	Atom Economy. Palladium-Catalyzed Formation of Coumarins by Addition of Phenols and Alkynoates via a Net Câ^'H Insertion. Journal of the American Chemical Society, 2003, 125, 4518-4526.	13.7	217

#	Article	IF	Citations
55	Advances in supramolecular host-mediated reactivity. Nature Catalysis, 2020, 3, 969-984.	34.4	216
56	Gold(I)-Catalyzed Ring Expansion of Cyclopropanols and Cyclobutanols. Journal of the American Chemical Society, 2005, 127, 9708-9709.	13.7	212
57	Gold-Catalyzed [3+3]-Annulation of Azomethine Imines with Propargyl Esters. Journal of the American Chemical Society, 2009, 131, 11654-11655.	13.7	211
58	Catalytic Enantioselective Conia-Ene Reaction. Journal of the American Chemical Society, 2005, 127, 17168-17169.	13.7	210
59	Phosphoramidite Gold(I)-Catalyzed Diastereo- and Enantioselective Synthesis of 3,4-Substituted Pyrrolidines. Journal of the American Chemical Society, 2011, 133, 5500-5507.	13.7	210
60	Enantioselective Oxidative Homocoupling and Cross-Coupling of 2-Naphthols Catalyzed by Chiral Iron Phosphate Complexes. Journal of the American Chemical Society, 2016, 138, 16553-16560.	13.7	209
61	Two Metals Are Better Than One in the Gold Catalyzed Oxidative Heteroarylation of Alkenes. Journal of the American Chemical Society, 2011, 133, 14293-14300.	13.7	208
62	Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time. Nature Chemistry, 2012, 4, 947-952.	13.6	206
63	Hydroalkoxylation Catalyzed by a Gold(I) Complex Encapsulated in a Supramolecular Host. Journal of the American Chemical Society, 2011, 133, 7358-7360.	13.7	204
64	Chiral Anion-Mediated Asymmetric Ring Opening of <i>meso</i> -Aziridinium and Episulfonium Ions. Journal of the American Chemical Society, 2008, 130, 14984-14986.	13.7	203
65	Mechanistic Studies on Au(I)-Catalyzed [3,3]-Sigmatropic Rearrangements using Cyclopropane Probes. Journal of the American Chemical Society, 2009, 131, 4513-4520.	13.7	202
66	Synthesis of Indenyl Ethers by Gold(I)-Catalyzed Intramolecular Carboalkoxylation of Alkynes. Journal of the American Chemical Society, 2006, 128, 12062-12063.	13.7	199
67	Gold(I)-Catalyzed Synthesis of Dihydropyrans. Journal of the American Chemical Society, 2006, 128, 8132-8133.	13.7	197
68	Asymmetric Fluorination of Enamides: Access to \hat{l}_{\pm} -Fluoroimines Using an Anionic Chiral Phase-Transfer Catalyst. Journal of the American Chemical Society, 2012, 134, 8376-8379.	13.7	197
69	Asymmetric additions to dienes catalysed by a dithiophosphoric acid. Nature, 2011, 470, 245-249.	27.8	196
70	Exceptionally fast carbon–carbon bond reductive elimination from gold(III). Nature Chemistry, 2014, 6, 159-164.	13.6	196
71	Gold(I)-Catalyzed Synthesis of Functionalized Cyclopentadienes. Angewandte Chemie - International Edition, 2007, 46, 912-914.	13.8	195
72	Gold(I)-Catalyzed Enantioselective Polycyclization Reactions. Journal of the American Chemical Society, 2010, 132, 8276-8277.	13.7	195

#	Article	IF	Citations
73	Catalytic enantioselective carbon-carbon bond formation using cycloisomerization reactions. Chemical Science, 2012, 3, 2899.	7.4	195
74	Vanadium-Catalyzed Asymmetric Oxidation of \hat{l}_{\pm} -Hydroxy Esters Using Molecular Oxygen as Stoichiometric Oxidant. Journal of the American Chemical Society, 2005, 127, 1090-1091.	13.7	194
75	Development of Ruthenium Catalysts for the Enantioselective Synthesis of P-Stereogenic Phosphines via Nucleophilic Phosphido Intermediates. Journal of the American Chemical Society, 2009, 131, 6021-6032.	13.7	193
76	Chiral Amide Directed Assembly of a Diastereo- and Enantiopure Supramolecular Host and its Application to Enantioselective Catalysis of Neutral Substrates. Journal of the American Chemical Society, 2013, 135, 18802-18805.	13.7	193
77	A dual catalytic strategy for carbon–phosphorus cross-coupling via gold and photoredox catalysis. Chemical Science, 2015, 6, 1194-1198.	7.4	190
78	Asymmetric Cross-Dehydrogenative Coupling Enabled by the Design and Application of Chiral Triazole-Containing Phosphoric Acids. Journal of the American Chemical Society, 2013, 135, 14044-14047.	13.7	188
79	Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. Accounts of Chemical Research, 2017, 50, 609-615.	15.6	188
80	Seven Post-synthetic Covalent Reactions in Tandem Leading to Enzyme-like Complexity within Metal–Organic Framework Crystals. Journal of the American Chemical Society, 2016, 138, 8352-8355.	13.7	186
81	A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis. Science, 2015, 347, 737-743.	12.6	185
82	A Catalytic Enantioselective Approach to Chromans and Chromanols. A Total Synthesis of (â°')-Calanolides A and B and the Vitamin E Nucleus. Journal of the American Chemical Society, 1998, 120, 9074-9075.	13.7	184
83	High-spatial-resolution mapping of catalytic reactions on single particles. Nature, 2017, 541, 511-515.	27.8	183
84	A New Palladium-Catalyzed Addition:Â A Mild Method for the Synthesis of Coumarins. Journal of the American Chemical Society, 1996, 118, 6305-6306.	13.7	182
85	Enantioselective Reduction of Imines Catalyzed by a Rhenium(V)â^'Oxo Complex. Journal of the American Chemical Society, 2005, 127, 12462-12463.	13.7	181
86	Au(I)-Catalyzed Enantioselective 1,3-Dipolar Cycloadditions of MÃ 1 4nchnones with Electron-Deficient Alkenes. Journal of the American Chemical Society, 2007, 129, 12638-12639.	13.7	179
87	Divergent Enantioselective Synthesis of (â^')-Galanthamine and (â^')-Morphine. Journal of the American Chemical Society, 2005, 127, 14785-14803.	13.7	175
88	Au(I)-Catalyzed Ring Expanding Cycloisomerizations: Total Synthesis of Ventricosene. Organic Letters, 2008, 10, 4315-4318.	4.6	174
89	Alkylgold complexes by the intramolecular aminoauration of unactivated alkenes. Chemical Science, 2010, 1, 226.	7.4	174
90	Chiral (Acyclic Diaminocarbene)Gold(I)-Catalyzed Dynamic Kinetic Asymmetric Transformation of Propargyl Esters. Journal of the American Chemical Society, 2011, 133, 12972-12975.	13.7	174

#	Article	IF	CITATIONS
91	A Comparison of Photocatalytic Activities of Gold Nanoparticles Following Plasmonic and Interband Excitation and a Strategy for Harnessing Interband Hot Carriers for Solution Phase Photocatalysis. ACS Central Science, 2017, 3, 482-488.	11.3	174
92	Gold atalyzed Allylation of Aryl Boronic Acids: Accessing Cross oupling Reactivity with Gold. Angewandte Chemie - International Edition, 2014, 53, 6211-6215.	13.8	173
93	Deracemization of Baylisâ^'Hillman Adducts. Journal of the American Chemical Society, 2000, 122, 3534-3535.	13.7	172
94	Synthesis of Benzonorcaradienes by Gold(I)-Catalyzed [4+3] Annulation. Journal of the American Chemical Society, 2006, 128, 14480-14481.	13.7	172
95	Total Synthesis of (+)â€Fawcettimine. Angewandte Chemie - International Edition, 2007, 46, 7671-7673.	13.8	170
96	Gold(I)-Catalyzed Enantioselective Synthesis of Benzopyrans <i>via</i> Rearrangement of Allylic Oxonium Intermediates. Journal of the American Chemical Society, 2009, 131, 3464-3465.	13.7	168
97	Gold(I)-Catalyzed Enantioselective [4 + 2]-Cycloaddition of Allene-dienes. Organic Letters, 2010, 12, 200-203.	4.6	168
98	Mechanistic Study of Gold(I)-Catalyzed Intermolecular Hydroamination of Allenes. Journal of the American Chemical Society, 2010, 132, 13064-13071.	13.7	168
99	Au(I)-Catalyzed Cycloisomerizations Terminated by sp ³ Câ^'H Bond Insertion. Journal of the American Chemical Society, 2009, 131, 2809-2811.	13.7	167
100	Reversing the Role of the Metalâ^'Oxygen Ï€-Bond. Chemoselective Catalytic Reductions with a Rhenium(V)-Dioxo Complex. Journal of the American Chemical Society, 2003, 125, 4056-4057.	13.7	166
101	Asymmetric Catalytic Synthesis of P-Stereogenic Phosphines via a Nucleophilic Ruthenium Phosphido Complex. Journal of the American Chemical Society, 2006, 128, 2786-2787.	13.7	166
102	Gold(I)-Catalyzed Diastereo- and Enantioselective 1,3-Dipolar Cycloaddition and Mannich Reactions of Azlactones. Journal of the American Chemical Society, 2011, 133, 3517-3527.	13.7	166
103	Enantioselective Synthesis of Highly Substituted Furans by a Copper(II)-Catalyzed Cycloisomerization–Indole Addition Reaction. Journal of the American Chemical Society, 2011, 133, 8486-8489.	13.7	163
104	Palladiumâ€Catalyzed Defluorinative Coupling of 1â€Arylâ€2,2â€Difluoroalkenes and Boronic Acids: Stereoselective Synthesis of Monofluorostilbenes. Angewandte Chemie - International Edition, 2016, 55, 11629-11632.	13.8	161
105	Enantioselective Total Synthesis of (â^')-Galanthamine. Journal of the American Chemical Society, 2000, 122, 11262-11263.	13.7	159
106	A Doubly Axially Chiral Phosphoric Acid Catalyst for the Asymmetric Tandem Oxyfluorination of Enamides. Angewandte Chemie - International Edition, 2012, 51, 9684-9688.	13.8	156
107	Rhenium-Catalyzed Coupling of Propargyl Alcohols and Allyl Silanes. Journal of the American Chemical Society, 2003, 125, 15760-15761.	13.7	154
108	Rhenium(V)-Catalyzed Synthesis of 2-Deoxy-α-glycosides. Journal of the American Chemical Society, 2004, 126, 4510-4511.	13.7	154

#	Article	IF	CITATIONS
109	Gold(I)-Catalyzed Dearomative Rautenstrauch Rearrangement: Enantioselective Access to Cyclopenta[<i>b</i>) jindoles. Journal of the American Chemical Society, 2015, 137, 3225-3228.	13.7	154
110	Visible light-mediated gold-catalysed carbon(sp ²)–carbon(sp) cross-coupling. Chemical Science, 2016, 7, 85-88.	7.4	154
111	Palladium-Catalyzed Kinetic and Dynamic Kinetic Asymmetric Transformation of 5-Acyloxy-2-(5H)-furanone. Enantioselective Synthesis of (\hat{a}°) -Aflatoxin B Lactone. Journal of the American Chemical Society, 1999, 121, 3543-3544.	13.7	153
112	On the Impact of Steric and Electronic Properties of Ligands on Gold(I)-Catalyzed Cycloaddition Reactions. Organic Letters, 2009, 11, 4798-4801.	4.6	153
113	Fluorenes and Styrenes by Au(I)-Catalyzed Annulation of Enynes and Alkynes. Journal of the American Chemical Society, 2008, 130, 3736-3737.	13.7	152
114	Ruthenium-Catalyzed Cycloisomerizations of 1,6- and 1,7-Enynes. Journal of the American Chemical Society, 2000, 122, 714-715.	13.7	151
115	Synthesis and structural characterization of isolable phosphine coinage metal ï€-complexes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2779-2782.	7.1	150
116	Expanding the Scope of Biomassâ€Derived Chemicals through Tandem Reactions Based on Oxorheniumâ€Catalyzed Deoxydehydration. Angewandte Chemie - International Edition, 2013, 52, 12905-12909.	13.8	150
117	Studies on the Vanadium-Catalyzed Nonoxidative Depolymerization of Miscanthus giganteus-Derived Lignin. ACS Catalysis, 2013, 3, 1369-1377.	11.2	150
118	Asymmetric Palladium-Catalyzed Directed Intermolecular Fluoroarylation of Styrenes. Journal of the American Chemical Society, 2014, 136, 4101-4104.	13.7	150
119	A Reactivity-Driven Approach to the Discovery and Development of Gold-Catalyzed Organic Reactions. Synlett, 2010, 2010, 675-691.	1.8	147
120	Gold-Catalyzed Oxidative Coupling Reactions with Aryltrimethylsilanes. Organic Letters, 2010, 12, 4728-4731.	4.6	147
121	Direct Asymmetric Amination of \hat{l}_{\pm} -Branched Cyclic Ketones Catalyzed by a Chiral Phosphoric Acid. Journal of the American Chemical Society, 2015, 137, 3205-3208.	13.7	147
122	Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles. Journal of the American Chemical Society, 2017, 139, 18084-18092.	13.7	147
123	On the Diels–Alder Approach to Solely Biomassâ€Derived Polyethylene Terephthalate (PET): Conversion of 2,5â€Dimethylfuran and Acrolein into <i>p</i> \$\frac{1}{2}\text{i}\$\text{of}\$\text{Exylene}\$. Chemistry - A European Journal, 2011, 17, 12452-12457.	3.3	146
124	Asymmetric Catalysis at the Mesoscale: Gold Nanoclusters Embedded in Chiral Self-Assembled Monolayer as Heterogeneous Catalyst for Asymmetric Reactions. Journal of the American Chemical Society, 2013, 135, 3881-3886.	13.7	146
125	Enantioselective 1,1-Arylborylation of Alkenes: Merging Chiral Anion Phase Transfer with Pd Catalysis. Journal of the American Chemical Society, 2015, 137, 3213-3216.	13.7	146
126	Câ^'C Coupling Reactivity of an Alkylgold(III) Fluoride Complex with Arylboronic Acids. Journal of the American Chemical Society, 2010, 132, 12859-12861.	13.7	145

#	Article	IF	Citations
127	A Mild Câ^'O Bond Formation Catalyzed by a Rhenium-Oxo Complex. Journal of the American Chemical Society, 2003, 125, 6076-6077.	13.7	144
128	Selective Monoterpene-like Cyclization Reactions Achieved by Water Exclusion from Reactive Intermediates in a Supramolecular Catalyst. Journal of the American Chemical Society, 2012, 134, 17873-17876.	13.7	144
129	Rhenium-Catalyzed Aromatic Propargylation. Organic Letters, 2004, 6, 1325-1327.	4.6	143
130	Asymmetric Fluorination of α-Branched Cyclohexanones Enabled by a Combination of Chiral Anion Phase-Transfer Catalysis and Enamine Catalysis using Protected Amino Acids. Journal of the American Chemical Society, 2014, 136, 5225-5228.	13.7	143
131	Analysis of an Unprecedented Mechanism for the Catalytic Hydrosilylation of Carbonyl Compounds. Journal of the American Chemical Society, 2007, 129, 14684-14696.	13.7	142
132	C(sp ³)–F reductive elimination from alkylgold(<scp>iii</scp>) fluoride complexes. Chemical Science, 2012, 3, 72-76.	7.4	141
133	Photoinitiated Oxidative Addition of CF ₃ I to Gold(I) and Facile Aryl-CF ₃ Reductive Elimination. Journal of the American Chemical Society, 2014, 136, 7777-7782.	13.7	141
134	Palladium-Catalyzed Enantioselective Cyclization of Silyloxy-1,6-Enynes. Journal of the American Chemical Society, 2007, 129, 2764-2765.	13.7	138
135	A Two-Component Catalyst System for Asymmetric Allylic Alkylations with Alcohol Pronucleophiles. Journal of the American Chemical Society, 1998, 120, 12702-12703.	13.7	135
136	Regio―and Enantioselective Hydroamination of Dienes by Gold(I)/Menthol Cooperative Catalysis. Angewandte Chemie - International Edition, 2011, 50, 9919-9922.	13.8	133
137	Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nature Catalysis, 2018, 1, 318-325.	34.4	133
138	Electrocatalysis at Organic–Metal Interfaces: Identification of Structure–Reactivity Relationships for CO ₂ Reduction at Modified Cu Surfaces. Journal of the American Chemical Society, 2019, 141, 7355-7364.	13.7	133
139	Enantioselective Fluoroamination: 1,4â€Addition to Conjugated Dienes Using Anionic Phaseâ€Transfer Catalysis. Angewandte Chemie - International Edition, 2013, 52, 7724-7727.	13.8	131
140	Palladium Catalyzed Kinetic and Dynamic Kinetic Asymmetric Transformations of \hat{I}^3 -Acyloxybutenolides. Enantioselective Total Synthesis of (+)-Aflatoxin B1and B2a. Journal of the American Chemical Society, 2003, 125, 3090-3100.	13.7	129
141	Syntheses of Seven-Membered Rings: Ruthenium-Catalyzed Intramolecular [5+2] Cycloadditions. Chemistry - A European Journal, 2005, 11, 2577-2590.	3.3	126
142	Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts. Accounts of Chemical Research, 2017, 50, 1894-1901.	15.6	126
143	Pd-Catalyzed Dynamic Kinetic Enantioselective Arylation of Silylphosphines. Journal of the American Chemical Society, 2007, 129, 15122-15123.	13.7	123
144	Single-Operation Deracemization of 3H-Indolines and Tetrahydroquinolines Enabled by Phase Separation. Journal of the American Chemical Society, 2013, 135, 14090-14093.	13.7	123

#	Article	IF	Citations
145	Enantioselective Cyclizations of Silyloxyenynes Catalyzed by Cationic Metal Phosphine Complexes. Journal of the American Chemical Society, 2012, 134, 2742-2749.	13.7	122
146	Synthesis of flinderoles B and C by a gold-catalyzed allene hydroarylation. Chemical Science, 2011, 2, 1706.	7.4	120
147	Disparate Catalytic Scaffolds for Atroposelective Cyclodehydration. Journal of the American Chemical Society, 2019, 141, 6698-6705.	13.7	120
148	Homogeneous Gold Redox Chemistry: Organometallics, Catalysis, and Beyond. Trends in Chemistry, 2020, 2, 707-720.	8.5	117
149	A Re(V)-Catalyzed Câ^'N Bond-Forming Route to Human Lipoxygenase Inhibitors. Organic Letters, 2005, 7, 2501-2504.	4.6	116
150	Palladium-Catalyzed Enantioselective 1,1-Fluoroarylation of Aminoalkenes. Journal of the American Chemical Society, 2015, 137, 12207-12210.	13.7	116
151	Enantiodivergent Fluorination of Allylic Alcohols: Data Set Design Reveals Structural Interplay between Achiral Directing Group and Chiral Anion. Journal of the American Chemical Society, 2016, 138, 3863-3875.	13.7	116
152	Chiral BrÃ, nsted Acid from a Cationic Gold(I) Complex: Catalytic Enantioselective Protonation of Silyl Enol Ethers of Ketones. Journal of the American Chemical Society, 2011, 133, 13248-13251.	13.7	115
153	Nucleophilic Substitution Catalyzed by a Supramolecular Cavity Proceeds with Retention of Absolute Stereochemistry. Journal of the American Chemical Society, 2014, 136, 14409-14412.	13.7	114
154	Enantioselective synthesis of cyclic carbamimidates via a three-component reaction of imines, terminal alkynes, and p-toluenesulfonylisocyanate using a monophosphine gold(i) catalyst. Chemical Science, 2011, 2, 1369.	7.4	113
155	<i>Z</i> â€Selective Semihydrogenation of Alkynes Catalyzed by a Cationic Vanadium Bisimido Complex. Angewandte Chemie - International Edition, 2011, 50, 3900-3903.	13.8	113
156	A combination of directing groups and chiral anion phase-transfer catalysis for enantioselective fluorination of alkenes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13729-13733.	7.1	113
157	An $\langle i \rangle$ In Situ $\langle i \rangle$ Directing Group Strategy for Chiral Anion Phase-Transfer Fluorination of Allylic Alcohols. Journal of the American Chemical Society, 2014, 136, 12864-12867.	13.7	113
158	Development and Analysis of a $Pd(0)$ -Catalyzed Enantioselective 1,1-Diarylation of Acrylates Enabled by Chiral Anion Phase Transfer. Journal of the American Chemical Society, 2016, 138, 15877-15880.	13.7	113
159	Enantioselective Synthesis of \hat{l}^3 -Hydroxyenones by Chiral Base-Catalyzed Kornblum DeLaMare Rearrangement. Journal of the American Chemical Society, 2006, 128, 12658-12659.	13.7	112
160	Enabling New Modes of Reactivity via Constrictive Binding in a Supramolecular-Assembly-Catalyzed Aza-Prins Cyclization. Journal of the American Chemical Society, 2015, 137, 9202-9205.	13.7	111
161	Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions. Journal of the American Chemical Society, 2015, 137, 7083-7086.	13.7	110
162	Living Ring-Opening Polymerization of N-Sulfonylaziridines:  Synthesis of High Molecular Weight Linear Polyamines. Journal of the American Chemical Society, 2005, 127, 17616-17617.	13.7	108

#	Article	IF	CITATIONS
163	Supported Au Nanoparticles with <i>N</i> -Heterocyclic Carbene Ligands as Active and Stable Heterogeneous Catalysts for Lactonization. Journal of the American Chemical Society, 2018, 140, 4144-4149.	13.7	108
164	Highly Selective Condensation of Biomassâ€Derived Methyl Ketones as a Source of Aviation Fuel. ChemSusChem, 2015, 8, 1726-1736.	6.8	105
165	Highly Active Heterogeneous Palladium Nanoparticle Catalysts for Homogeneous Electrophilic Reactions in Solution and the Utilization of a Continuous Flow Reactor. Journal of the American Chemical Society, 2010, 132, 16771-16773.	13.7	104
166	Chiral Anion Phase Transfer of Aryldiazonium Cations: An Enantioselective Synthesis of C3â€Diazenated Pyrroloindolines. Angewandte Chemie - International Edition, 2014, 53, 5600-5603.	13.8	104
167	A catalytic fluoride-rebound mechanism for C(sp ³)-CF ₃ bond formation. Science, 2017, 356, 1272-1276.	12.6	103
168	A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nature Catalysis, 2021, 4, 523-531.	34.4	103
169	Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7645-7649.	7.1	101
170	A Pt-Cluster-Based Heterogeneous Catalyst for Homogeneous Catalytic Reactions: X-ray Absorption Spectroscopy and Reaction Kinetic Studies of Their Activity and Stability against Leaching. Journal of the American Chemical Society, 2011, 133, 13527-13533.	13.7	94
171	Synergistic Effects in Bimetallic Palladium–Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions. Journal of the American Chemical Society, 2016, 138, 6805-6812.	13.7	94
172	Conformational Selection as the Mechanism of Guest Binding in a Flexible Supramolecular Host. Journal of the American Chemical Society, 2017, 139, 8013-8021.	13.7	93
173	Enantioselective Reduction of Ketones and Imines Catalyzed by (CNâ€Box)Re ^V –Oxo Complexes. Chemistry - A European Journal, 2010, 16, 9555-9562.	3.3	92
174	Gold(I)-Catalyzed Enantioselective Carboalkoxylation of Alkynes. Journal of the American Chemical Society, 2013, 135, 12600-12603.	13.7	92
175	Supramolecular Ga ₄ L ₆ ^{12–} Cage Photosensitizes 1,3-Rearrangement of Encapsulated Guest via Photoinduced Electron Transfer. Journal of the American Chemical Society, 2015, 137, 10128-10131.	13.7	92
176	Gold Catalysis. Catalytic Science Series, 2014, , .	0.0	92
177	Well-Defined Chiral Gold(III) Complex Catalyzed Direct Enantioconvergent Kinetic Resolution of 1,5-Enynes. Journal of the American Chemical Society, 2017, 139, 11016-11019.	13.7	91
178	A Step beyond the Feltham–Enemark Notation: Spectroscopic and Correlated <i>ab Initio < /i> Computational Support for an Antiferromagnetically Coupled M(II)–(NO) < sup > Ⱐ< /sup > Description of Tp*M(NO) (M = Co, Ni). Journal of the American Chemical Society, 2011, 133, 18785-18801.</i>	13.7	89
179	A Versatile Procedure for the Preparation of Aryl Thiocyanates Using N-Thiocyanatosuccinimide (NTS). Synthetic Communications, 1995, 25, 1277-1286.	2.1	87
180	Mechanistic Dichotomy in CpRu(CH3CN)3PF6Catalyzed Enyne Cycloisomerizations. Journal of the American Chemical Society, 2002, 124, 5025-5036.	13.7	87

#	Article	IF	Citations
181	Stereoselective Synthesis of Vinylsilanes by a Gold(I)-Catalyzed Acetylenic Sila-Cope Rearrangement. Journal of the American Chemical Society, 2006, 128, 11364-11365.	13.7	87
182	Enantioselective Synthesis of Cyclic Ethers through a Vanadium-Catalyzed Resolution/Oxidative Cyclization. Angewandte Chemie - International Edition, 2006, 45, 2096-2099.	13.8	87
183	Parametrization of Non-covalent Interactions for Transition State Interrogation Applied to Asymmetric Catalysis. Journal of the American Chemical Society, 2017, 139, 6803-6806.	13.7	87
184	Scope and Mechanism of Cooperativity at the Intersection of Organometallic and Supramolecular Catalysis. Journal of the American Chemical Society, 2016, 138, 9682-9693.	13.7	86
185	A new Ru catalyst for alkeneî—,alkyne coupling. Tetrahedron Letters, 1999, 40, 7739-7743.	1.4	85
186	Mechanistic Investigations of the Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Benzyl Acrylates. Journal of the American Chemical Society, 2017, 139, 12688-12695.	13.7	85
187	Reduction of Aryl Thiocyanates with Sml2and Pd-Catalyzed Coupling with Aryl Halides as a Route to Mixed Aryl Sulfides. Journal of Organic Chemistry, 1996, 61, 7677-7680.	3.2	84
188	Halide-Dependent Mechanisms of Reductive Elimination from Gold(III). Journal of the American Chemical Society, 2015, 137, 7921-7928.	13.7	83
189	Parameterization of Acyclic Diaminocarbene Ligands Applied to a Gold(I)-Catalyzed Enantioselective Tandem Rearrangement/Cyclization. Journal of the American Chemical Society, 2017, 139, 12943-12946.	13.7	82
190	Gold(I)-Catalyzed Regioselective Cyclizations of Silyl Ketene Amides and Carbamates with Alkynes. Journal of Organic Chemistry, 2007, 72, 6287-6289.	3.2	81
191	Enantioselective, Stereodivergent Hydroazidation and Hydroamination of Allenes Catalyzed by Acyclic Diaminocarbene (ADC) Gold(I) Complexes. Angewandte Chemie - International Edition, 2016, 55, 6079-6083.	13.8	81
192	Deconvoluting the Role of Charge in a Supramolecular Catalyst. Journal of the American Chemical Society, 2018, 140, 6591-6595.	13.7	81
193	A New Route to the Synthesis of the Naturally Occurring Benzopentathiepin Varacin. Journal of the American Chemical Society, 1995, 117, 7261-7262.	13.7	80
194	Phosphonium Formation by Facile Carbon–Phosphorus Reductive Elimination from Gold(III). Journal of the American Chemical Society, 2016, 138, 587-593.	13.7	80
195	Ruthenium-Catalyzed Cycloisomerization of 1,6-Enynes Initiated by Câ^'H Activation. Journal of the American Chemical Society, 1999, 121, 9728-9729.	13.7	78
196	Isolation and Reactivity of Trifluoromethyl Iodonium Salts. ACS Central Science, 2016, 2, 341-350.	11,3	78
197	Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels. Nature Protocols, 2015, 10, 528-537.	12.0	77
198	Enantioselective Palladiumâ€Catalyzed Oxidative β,βâ€Fluoroarylation of α,βâ€Unsaturated Carbonyl Derivative Angewandte Chemie - International Edition, 2016, 55, 9045-9049.	2S 13.8	77

#	Article	IF	CITATIONS
199	The development and mechanistic investigation of a palladium-catalyzed 1,3-arylfluorination of chromenes. Chemical Science, 2017, 8, 2890-2897.	7.4	76
200	A Ruthenium-Catalyzed Hydrative Cyclization and $[4+2]$ Cycloaddition of Yne-enones. Journal of the American Chemical Society, 2000, 122, 5877-5878.	13.7	75
201	Enantioselective construction of remote tertiary carbonâ€"fluorine bonds. Nature Chemistry, 2019, 11, 710-715.	13.6	75
202	In Situ IR and X-ray High Spatial-Resolution Microspectroscopy Measurements of Multistep Organic Transformation in Flow Microreactor Catalyzed by Au Nanoclusters. Journal of the American Chemical Society, 2014, 136, 3624-3629.	13.7	74
203	Gold(i)-catalyzed enantioselective bromocyclization reactions of allenes. Chemical Science, 2013, 4, 3427.	7.4	69
204	The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations. Chemical Science, 2015, 6, 1383-1393.	7.4	68
205	Goldâ€Catalyzed Redox Synthesis of Imidazo[1,2â€ <i>a</i>]pyridines using Pyridine <i>N</i> â€Oxide and Alkynes. Advanced Synthesis and Catalysis, 2014, 356, 687-691.	4.3	66
206	Gold(I)â€Catalyzed Enantioselective Desymmetrization of 1,3â€Diols through Intramolecular Hydroalkoxylation of Allenes. Angewandte Chemie - International Edition, 2015, 54, 14447-14451.	13.8	66
207	A Supramolecular Strategy for Selective Catalytic Hydrogenation Independent of Remote Chain Length. Journal of the American Chemical Society, 2019, 141, 11806-11810.	13.7	66
208	Synthesis of 1,1-Disubstituted Alkenes via a Ru-Catalyzed Addition. Journal of the American Chemical Society, 2001, 123, 12504-12509.	13.7	65
209	Ruthenium-Catalyzed Olefin Cross Metathesis of Styrenes as an Alternative to the Heck and Cross-Coupling Reactions. Advanced Synthesis and Catalysis, 2002, 344, 634.	4.3	65
210	Asymmetric addition of \hat{l}_{\pm} -branched cyclic ketones to allenamides catalyzed by a chiral phosphoric acid. Chemical Science, 2016, 7, 2653-2656.	7.4	65
211	Ruthenium-Catalyzed Enyne Cycloisomerizations. Effect of Allylic Silyl Ether on Regioselectivity. Journal of the American Chemical Society, 2004, 126, 15592-15602.	13.7	64
212	Gold Catalysis – Steadily Increasing in Importance. Advanced Synthesis and Catalysis, 2016, 358, 1347-1347.	4.3	64
213	Functional group diversity by ruthenium-catalyzed olefin cross-metathesis. Pure and Applied Chemistry, 2002, 74, 7-10.	1.9	63
214	Catalytic Upgrading of Biomassâ€Derived Methyl Ketones to Liquid Transportation Fuel Precursors by an Organocatalytic Approach. Angewandte Chemie - International Edition, 2015, 54, 4673-4677.	13.8	63
215	A Nucleophilic Strategy for Enantioselective Intermolecular α-Amination: Access to Enantioenriched α-Arylamino Ketones. Journal of the American Chemical Society, 2015, 137, 7632-7635.	13.7	63
216	Biomimetic Approach to the Catalytic Enantioselective Synthesis of Flavonoids. Journal of the American Chemical Society, 2016, 138, 9775-9778.	13.7	63

#	Article	IF	Citations
217	Uncovering Subtle Ligand Effects of Phosphines Using Gold(I) Catalysis. ACS Catalysis, 2017, 7, 3973-3978.	11.2	63
218	Hydrogen Gas-Mediated Deoxydehydration/Hydrogenation of Sugar Acids: Catalytic Conversion of Glucarates to Adipates. Journal of the American Chemical Society, 2017, 139, 14001-14004.	13.7	61
219	Polymer-Encapsulated Metallic Nanoparticles as a Bridge Between Homogeneous and Heterogeneous Catalysis. Catalysis Letters, 2015, 145, 126-138.	2.6	60
220	Gold-Catalyzed Hydrofluorination of Electron-Deficient Alkynes: Stereoselective Synthesis of \hat{l}^2 -Fluoro Michael Acceptors. ACS Catalysis, 2018, 8, 5947-5951.	11.2	60
221	Harnessing Noncovalent Interactions in Dual-Catalytic Enantioselective Heck–Matsuda Arylation. Journal of the American Chemical Society, 2019, 141, 998-1009.	13.7	59
222	Gold(I)â€Catalyzed Desymmetrization of 1,4â€Dienes by an Enantioselective Tandem Alkoxylation/Claisen Rearrangement. Angewandte Chemie - International Edition, 2015, 54, 8529-8532.	13.8	58
223	Regio- and Enantioselective Bromocyclization of Difluoroalkenes as a Strategy to Access Tetrasubstituted Difluoromethylene-Containing Stereocenters. Journal of the American Chemical Society, 2020, 142, 8946-8952.	13.7	58
224	A Physical Organic Approach to Tuning Reagents for Selective and Stable Methionine Bioconjugation. Journal of the American Chemical Society, 2019, 141, 12657-12662.	13.7	56
225	Synthesis of Biomassâ€Derived Ethers for Use as Fuels and Lubricants. ChemSusChem, 2019, 12, 2835-2858.	6.8	56
226	Synthesis of (â^')â€Octalactinâ€A by a Strategic Vanadiumâ€Catalyzed Oxidative Kinetic Resolution. Angewandte Chemie - International Edition, 2008, 47, 3755-3758.	13.8	54
227	Chemocatalytic Upgrading of Tailored Fermentation Products Toward Biodiesel. ChemSusChem, 2014, 7, 2445-2448.	6.8	54
228	Enantioselective Heck–Matsuda Arylations through Chiral Anion Phaseâ€Transfer of Aryl Diazonium Salts. Angewandte Chemie - International Edition, 2017, 56, 5806-5811.	13.8	54
229	Preparation and reactivity of terminal gold(<scp>i</scp>) amides and phosphides. Chemical Science, 2013, 4, 1023-1027.	7.4	53
230	Catalytic Dynamic Kinetic Resolutions in Tandem to Construct Two-Axis Terphenyl Atropisomers. Journal of the American Chemical Society, 2020, 142, 16461-16470.	13.7	52
231	Palladium atalyzed Defluorinative Coupling of 1â€Arylâ€2,2â€Difluoroalkenes and Boronic Acids: Stereoselective Synthesis of Monofluorostilbenes. Angewandte Chemie, 2016, 128, 11801-11804.	2.0	51
232	Enantioselective Allenoate-Claisen Rearrangement Using Chiral Phosphate Catalysts. Journal of the American Chemical Society, 2020, 142, 6390-6399.	13.7	50
233	Mechanism of Photoredox-Initiated Câ€"C and Câ€"N Bond Formation by Arylation of IPrAu(I)â€"CF ₃ and IPrAu(I)â€"Succinimide. Journal of the American Chemical Society, 2019, 141, 4308-4315.	13.7	48
234	Data Science Meets Physical Organic Chemistry. Accounts of Chemical Research, 2021, 54, 3136-3148.	15.6	47

#	Article	IF	Citations
235	Cobalt Dinitrosoalkane Complexes in the Câ [°] H Functionalization of Olefins. Journal of the American Chemical Society, 2008, 130, 3777-3779.	13.7	46
236	Direct Michael Addition of Alkenes via a Cobalt-Dinitrosyl Mediated Vinylic C–H Functionalization Reaction. Journal of the American Chemical Society, 2011, 133, 10787-10789.	13.7	45
237	Strategies for remote enantiocontrol in chiral gold(<scp>iii</scp>) complexes applied to catalytic enantioselective γ,Î⁻-Diels–Alder reactions. Chemical Science, 2020, 11, 6450-6456.	7.4	45
238	Backbone-Photodegradable Polymers by Incorporating Acylsilane Monomers via Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 2021, 143, 17920-17925.	13.7	45
239	Inorganic Micelles as Efficient and Recyclable Micellar Catalysts. Nano Letters, 2014, 14, 379-383.	9.1	44
240	Supramolecular Host-Selective Activation of Iodoarenes by Encapsulated Organometallics. Journal of the American Chemical Society, 2019, 141, 1701-1706.	13.7	43
241	Enantioselective Synthesis of Fluoro–Dihydroquinazolones and â^'Benzooxazinones by Fluorination-Initiated Asymmetric Cyclization Reactions. ACS Catalysis, 2016, 6, 151-154.	11.2	42
242	Chiral Diaryliodonium Phosphate Enables Light Driven Diastereoselective α-C(sp ³)–H Acetalization. Journal of the American Chemical Society, 2018, 140, 8350-8356.	13.7	42
243	Enantioselective Synthesis of <i>N</i> , <i>S</i> â€Acetals by an Oxidative Pummererâ€Type Transformation using Phaseâ€Transfer Catalysis. Angewandte Chemie - International Edition, 2018, 57, 589-593.	13.8	41
244	CO \cdot sub \cdot 2 \cdot /sub \cdot reduction on pure Cu produces only H \cdot sub \cdot 2 \cdot /sub \cdot after subsurface O is depleted: Theory and experiment. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
245	A Dinuclear Mechanism Implicated in Controlled Carbene Polymerization. Journal of the American Chemical Society, 2019, 141, 6473-6478.	13.7	40
246	Generation of Axially Chiral Fluoroallenes through a Copper-Catalyzed Enantioselective \hat{l}^2 -Fluoride Elimination. Journal of the American Chemical Society, 2021, 143, 13759-13768.	13.7	40
247	Tandem cycloisomerization/Suzuki coupling of arylethynyl MIDA boronates. Tetrahedron, 2011, 67, 4306-4312.	1.9	39
248	Combining microbial production with chemical upgrading. Current Opinion in Biotechnology, 2016, 38, 47-53.	6.6	39
249	Flexible NO ₂ â€Functionalized Nâ€Heterocyclic Carbene Monolayers on Au (111) Surface. Chemistry - A European Journal, 2019, 25, 15067-15072.	3.3	39
250	A Nanovessel-Catalyzed Three-Component Aza-Darzens Reaction. Journal of the American Chemical Society, 2020, 142, 733-737.	13.7	39
251	Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks. CheM, 2020, 6, 142-152.	11.7	39
252	Metal Nanoparticles Catalyzed Selective Carbon–Carbon Bond Activation in the Liquid Phase. Journal of the American Chemical Society, 2016, 138, 8533-8537.	13.7	37

#	Article	IF	CITATIONS
253	Carbon Monoxide, Isocyanide, and Nitrile Complexes of Cationic, d ⁰ Vanadium Bisimides: π-Back Bonding Derived from the π Symmetry, Bonding Metal Bisimido Ligand Orbitals. Inorganic Chemistry, 2012, 51, 13334-13344.	4.0	35
254	Ligand-Based Carbon–Nitrogen Bond Forming Reactions of Metal Dinitrosyl Complexes with Alkenes and Their Application to C–H Bond Functionalization. Accounts of Chemical Research, 2014, 47, 517-529.	15.6	35
255	Migratory Insertion of Carbenes into Au(III)–C Bonds. Journal of the American Chemical Society, 2018, 140, 466-474.	13.7	35
256	Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5733-5740.	7.1	35
257	Impact of Host Flexibility on Selectivity in a Supramolecular Host-Catalyzed Enantioselective aza-Darzens Reaction. Journal of the American Chemical Society, 2022, 144, 11425-11433.	13.7	35
258	ABE Condensation over Monometallic Catalysts: Catalyst Characterization and Kinetics. ChemCatChem, 2017, 9, 677-684.	3.7	33
259	Elucidating the Influence of Anchoring Geometry on the Reactivity of NO ₂ -Functionalized N-Heterocyclic Carbene Monolayers. Journal of Physical Chemistry Letters, 2019, 10, 5099-5104.	4.6	33
260	An Atom-Economical Three-Carbon Chain Extension of Alkynes to FormE-Enol Silanes. Journal of the American Chemical Society, 2001, 123, 2897-2898.	13.7	32
261	Mechanism and Kinetics of Isobutene Formation from Ethanol and Acetone over Zn <i>></i> >>>Catalysis, 2019, 9, 10588-10604.	11.2	32
262	Electrochemical deposition of N-heterocyclic carbene monolayers on metal surfaces. Nature Communications, 2020, 11, 5714.	12.8	32
263	Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors. Metabolic Engineering, 2014, 25, 124-130.	7.0	31
264	Upgrading Lignocellulosic Products to Dropâ€In Biofuels via Dehydrogenative Crossâ€Coupling and Hydrodeoxygenation Sequence. ChemSusChem, 2015, 8, 2609-2614.	6.8	31
265	Chiral Anion Phase Transfer of Aryldiazonium Cations: An Enantioselective Synthesis of C3â€Diazenated Pyrroloindolines. Angewandte Chemie, 2014, 126, 5706-5709.	2.0	30
266	Enantioselective fluorination of homoallylic alcohols enabled by the tuning of non-covalent interactions. Chemical Science, 2018, 9, 7153-7158.	7.4	30
267	Production of renewable lubricants via self-condensation of methyl ketones. Green Chemistry, 2016, 18, 3577-3581.	9.0	29
268	Identifying site-dependent reactivity in oxidation reactions on single Pt particles. Chemical Science, 2018, 9, 6523-6531.	7.4	29
269	Approaching 100% Selectivity at Low Potential on Ag for Electrochemical CO ₂ Reduction to CO Using a Surface Additive. ACS Catalysis, 2021, 11, 9034-9042.	11.2	29
270	Cobalt-Mediated [3 + 2]-Annulation Reaction of Alkenes with \hat{l}_{\pm}, \hat{l}^2 -Unsaturated Ketones and Imines. Organic Letters, 2009, 11, 3698-3700.	4.6	28

#	Article	IF	CITATIONS
271	Cobalt-Mediated, Enantioselective Synthesis of $\langle i \rangle C \langle i \rangle \langle sub \rangle 2 \langle sub \rangle$ and $\langle i \rangle C \langle i \rangle \langle sub \rangle 1 \langle sub \rangle$ Dienes. Journal of the American Chemical Society, 2010, 132, 16365-16367.	13.7	28
272	Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. Angewandte Chemie - International Edition, 2017, 56, 14080-14084.	13.8	28
273	Chemoselective and Site-Selective Reductions Catalyzed by a Supramolecular Host and a Pyridine–Borane Cofactor. Journal of the American Chemical Society, 2021, 143, 2108-2114.	13.7	28
274	Synthesis of Stable Gold(III) Pincer Complexes with Anionic Heteroatom Donors. Organometallics, 2014, 33, 4169-4172.	2.3	27
275	Heterogeneous Supramolecular Catalysis through Immobilization of Anionic M ₄ L ₆ Assemblies on Cationic Polymers. Journal of the American Chemical Society, 2020, 142, 19327-19338.	13.7	27
276	Strong Metal–Adsorbate Interactions Increase the Reactivity and Decrease the Orientational Order of OH-Functionalized N-Heterocyclic Carbene Monolayers. Langmuir, 2020, 36, 697-703.	3.5	26
277	Methionine oxidation activates pyruvate kinase M2 to promote pancreatic cancer metastasis. Molecular Cell, 2022, 82, 3045-3060.e11.	9.7	26
278	Enantioselective cyclization of enamide-ynes and application to the synthesis of the kopsifoline core. Tetrahedron, 2013, 69, 5640-5646.	1.9	25
279	Mechanism and kinetics of 1-dodecanol etherification over tungstated zirconia. Journal of Catalysis, 2017, 354, 13-23.	6.2	25
280	Effect of Alcohol Structure on the Kinetics of Etherification and Dehydration over Tungstated Zirconia. ChemSusChem, 2018, 11, 3104-3111.	6.8	25
281	Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. Angewandte Chemie - International Edition, 2020, 59, 14647-14655.	13.8	25
282	Enantioselective Palladiumâ€Catalyzed Oxidative β,βâ€Fluoroarylation of α,βâ€Unsaturated Carbonyl Derivative Angewandte Chemie, 2016, 128, 9191-9195.	^S 2.0	24
283	Enantioselective, Stereodivergent Hydroazidation and Hydroamination of Allenes Catalyzed by Acyclic Diaminocarbene (ADC) Gold(I) Complexes. Angewandte Chemie, 2016, 128, 6183-6187.	2.0	24
284	Controlled Single-Electron Transfer via Metal–Ligand Cooperativity Drives Divergent Nickel-Electrocatalyzed Radical Pathways. Journal of the American Chemical Society, 2021, 143, 6990-7001.	13.7	24
285	An isolated water droplet in the aqueous solution of a supramolecular tetrahedral cage. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32954-32961.	7.1	24
286	Cooperative Stereoinduction in Asymmetric Photocatalysis. Journal of the American Chemical Society, 2022, 144, 4206-4213.	13.7	24
287	A versatile synthetic route to 1,5-dithiocins from o-mercapto aromatic aldehydes. Canadian Journal of Chemistry, 1999, 77, 113-121.	1.1	23
288	Selectivity tuning over monometallic and bimetallic dehydrogenation catalysts: effects of support and particle size. Catalysis Science and Technology, 2018, 8, 314-327.	4.1	23

#	Article	IF	CITATIONS
289	Synthesis of the First (1-3:6,7-ÎCyclodecadienyl)ruthenium Complex by the Intramolecular Reaction of an Alkene and a Vinylcyclopropane. Angewandte Chemie - International Edition, 2001, 40, 1114-1116.	13.8	22
290	Gold(I)-catalyzed enantioselective [3+2] and [3+3] cycloaddition reactions of propargyl acetals/ketals. Tetrahedron, 2015, 71, 5800-5805.	1.9	22
291	New Insights into Aldol Reactions of Methyl Isocyanoacetate Catalyzed by Heterogenized Homogeneous Catalysts. Nano Letters, 2017, 17, 584-589.	9.1	22
292	Site-Selective Acylation of Natural Products with BINOL-Derived Phosphoric Acids. ACS Catalysis, 2019, 9, 9794-9799.	11.2	22
293	An Activity-Based Methionine Bioconjugation Approach To Developing Proximity-Activated Imaging Reporters. ACS Central Science, 2020, 6, 32-40.	11.3	20
294	Synthesis of N-trifluoromethyl amides from carboxylic acids. CheM, 2021, 7, 2245-2255.	11.7	20
295	Enantioselective Kinetic Resolution/Desymmetrization of <i>Para</i> à€Quinols: A Case Study in Boronicâ€Acidâ€Directed Phosphoric Acid Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 295-301.	4.3	18
296	Photo-Brook rearrangement of acyl silanes as a strategy for photoaffinity probe design. Chemical Science, 2022, 13, 3851-3856.	7.4	17
297	<i>N</i> â€Heterocyclic Carbene Based Nanolayer for Copper Film Oxidation Mitigation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
298	Hydration and Hydroalkoxylation of CC Multiple Bonds. , 2012, , 201-235.		16
299	Protein-like proton exchange in a synthetic host cavity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15303-15307.	7.1	16
300	[(TMEDA)Co(NO)2][BPh4]: A versatile synthetic entry point to four and five coordinate {Co(NO)2}10 complexes. Journal of Organometallic Chemistry, 2011, 696, 3974-3981.	1.8	15
301	Source of Rate Acceleration for Carbocation Cyclization in Biomimetic Supramolecular Cages. Journal of the American Chemical Society, 2022, 144, 11413-11424.	13.7	15
302	Gold catalysis for organic synthesis. Beilstein Journal of Organic Chemistry, 2011, 7, 553-554.	2.2	14
303	Synthesis of [RuCl ₂ (NO) ₂ (THF)] and its Double CN Bondâ€Forming Reactions with Alkenes. Angewandte Chemie - International Edition, 2011, 50, 4484-4487.	13.8	13
304	Enantioselective Heck–Matsuda Arylations through Chiral Anion Phaseâ€Transfer of Aryl Diazonium Salts. Angewandte Chemie, 2017, 129, 5900-5905.	2.0	13
305	Measuring ion-pairing and hydration in variable charge supramolecular cages with microwave microfluidics. Communications Chemistry, $2019, 2, \ldots$	4.5	12
306	Site-dependent selectivity in oxidation reactions on single Pt nanoparticles. Physical Chemistry Chemical Physics, 2020, 22, 18765-18769.	2.8	12

#	Article	IF	CITATIONS
307	Site-Independent Hydrogenation Reactions on Oxide-Supported Au Nanoparticles Facilitated by Intraparticle Hydrogen Atom Diffusion. ACS Catalysis, 2021, 11, 9875-9884.	11.2	12
308	A divergent/convergent approach to dolabriferol: the Kornblum–DeLaMare enantiomeric resolution. Tetrahedron Letters, 2015, 56, 3643-3646.	1.4	11
309	Coâ€production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends. Biotechnology and Bioengineering, 2016, 113, 2079-2087.	3.3	11
310	Using silyl protecting group to enable post-deposition C–C coupling reactions of alkyne-functionalized N-heterocyclic carbene monolayers on Au surfaces. Chemical Communications, 2021, 57, 5342-5345.	4.1	10
311	Zirconium-redox-shuttled cross-electrophile coupling of aromatic and heteroaromatic halides. CheM, 2021, 7, 1963-1974.	11.7	10
312	SONICATION AND ALUMINUM AMALGAM IN THE LEIMGRUBER-BATCHO REACTION. AN IMPROVED PREPARATION OF 6-AMINOINDOLE. Organic Preparations and Procedures International, 1995, 27, 576-579.	1.3	9
313	Vanadium Bisimide Bonding Investigated by X-ray Crystallography, ⁵¹ V and ¹³ C Nuclear Magnetic Resonance Spectroscopy, and VL _{3,2} -Edge X-ray Absorption Near-Edge Structure Spectroscopy. Inorganic Chemistry, 2013, 52, 11650-11660.	4.0	9
314	Enantioselective Synthesis of <i>N</i> , <i>S</i> â€Acetals by an Oxidative Pummererâ€Type Transformation using Phaseâ€Transfer Catalysis. Angewandte Chemie, 2018, 130, 598-602.	2.0	9
315	A SIMPLE METHOD FOR THE SELECTIVE MOM PROTECTION OF THIOLS. Synlett, 1995, 1995, 159-160.	1.8	8
316	Charting the course of catalysis. Nature, 2009, 459, 917-918.	27.8	8
317	Gold catalysis for organic synthesis II. Beilstein Journal of Organic Chemistry, 2013, 9, 2040-2041.	2.2	8
318	Beyond the Molecule. Accounts of Chemical Research, 2018, 51, 2980-2981.	15.6	8
319	Asymmetric Synthesis Enabled by Organometallic Complexes. Organometallics, 2019, 38, 3899-3901.	2.3	8
320	Revisiting the Bonding Model for Gold(I) Species: The Importance of Pauli Repulsion Revealed in a Gold(I)â€Cyclobutadiene Complex. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
321	Cluster Preface: Gold Catalysis for Organic Synthesis: Opportunities Abound. Synlett, 2012, 2012, 46-48.	1.8	7
322	Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. Angewandte Chemie, 2017, 129, 14268-14272.	2.0	7
323	Hybrid Biological–Chemical Approach Offers Flexibility and Reduces the Carbon Footprint of Biobased Plastics, Rubbers, and Fuels. ACS Sustainable Chemistry and Engineering, 2018, 6, 14523-14532.	6.7	7
324	Staphylococcus aureus Peptide Methionine Sulfoxide Reductases Protect from Human Whole-Blood Killing. Infection and Immunity, 2021, 89, e0014621.	2,2	7

#	Article	IF	CITATIONS
325	Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. Angewandte Chemie, 2020, 132, 14755-14763.	2.0	6
326	Enantioselective Gold-Catalyzed Synthesis of Heterocyclic Compounds. Topics in Heterocyclic Chemistry, 2015, , 227-248.	0.2	4
327	<i>N</i> â€Heterocyclic Carbene Based Nanolayer for Copper Film Oxidation Mitigation. Angewandte Chemie, 2022, 134, .	2.0	4
328	The intramolecularsila-Pummerer cyclization: A new route to sulfur heterocycles. Heteroatom Chemistry, 1994, 5, 251-257.	0.7	3
329	Gold-Catalyzed Reduction Reactions. , 2012, , 27-54.		3
330	Oxidation of Alcohols and Carbohydrates. , 2012, , 309-329.		2
331	GOLD CATALYSIS IN NATURAL PRODUCT SYNTHESIS. Catalytic Science Series, 2014, , 501-536.	0.0	2
332	Beyond Allylic Alkylation: Applications of Trost Chemistry in Complex Molecule Synthesis. Israel Journal of Chemistry, 2021, 61, 340-366.	2.3	2
333	The interface is a tunable dimension in electricityâ€driven organic synthesis. Natural Sciences, 2021, 1, e20210036.	2.1	2
334	Phosphine-Catalyzed Hydration and Hydroalkoxylation of Activated Olefins: Use of a Strong Nucleophile to Generate a Strong Base ChemInform, 2003, 34, no.	0.0	1
335	Reversing the Role of the Metal—Oxygen π-Bond. Chemoselective Catalytic Reductions with a Rhenium(V)-Dioxo Complex ChemInform, 2003, 34, no.	0.0	0
336	Atom Economy. Palladium-Catalyzed Formation of Coumarins by Addition of Phenols and Alkynoates via a Net C—H Insertion ChemInform, 2003, 34, no.	0.0	0
337	A Mild Câ€"O Bond Formation Catalyzed by a Rhenium-Oxo Complex ChemInform, 2003, 34, no.	0.0	0
338	Rhenium-Catalyzed Coupling of Propargyl Alcohols and Allyl Silanes ChemInform, 2004, 35, no.	0.0	0
339	Gold(I)-Catalyzed Conia-Ene Reaction of β-Ketoesters with Alkynes ChemInform, 2004, 35, no.	0.0	0
340	Rhenium(V)-Catalyzed Synthesis of 2-Deoxy-α-glycosides ChemInform, 2004, 35, no.	0.0	0
341	Rhenium-Catalyzed Aromatic Propargylation ChemInform, 2004, 35, no.	0.0	0
342	Catalytic Isomerization of 1,5-Enynes to Bicyclo[3.1.0]hexenes ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
343	Gold(I)-Catalyzed 5-endo-dig Carbocyclization of Acetylenic Dicarbonyl Compounds ChemInform, 2005, 36, no.	0.0	0
344	Ruthenium-Catalyzed Enyne Cycloisomerizations. Effect of Allylic Silyl Ether on Regioselectivity ChemInform, 2005, 36, no.	0.0	0
345	Gold(I)-Catalyzed Propargyl Claisen Rearrangement ChemInform, 2005, 36, no.	0.0	0
346	Vanadium-Catalyzed Asymmetric Oxidation of \hat{l}_{\pm} -Hydroxy Esters Using Molecular Oxygen as Stoichiometric Oxidant ChemInform, 2005, 36, no.	0.0	0
347	Synthesis of 2-Cyclopentenones by Gold(I)-Catalyzed Rautenstrauch Rearrangement ChemInform, 2005, 36, no.	0.0	0
348	Gold(I)-Catalyzed Ring Expansion of Cyclopropanols and Cyclobutanols ChemInform, 2005, 36, no.	0.0	0
349	Gold(I)-Catalyzed Intramolecular Acetylenic Schmidt Reaction ChemInform, 2005, 36, no.	0.0	0
350	Enantioselective Reduction of Imines Catalyzed by a Rhenium(V)â€"Oxo Complex ChemInform, 2006, 37, no.	0.0	0
351	Catalysis Science & Catalysis In the USA. Catalysis Science and Technology, 2015, 5, 1357-1359.	4.1	0
352	Flexible NO ₂ â€Functionalized Nâ€Heterocyclic Carbene Monolayers on Au(111) Surface. Chemistry - A European Journal, 2019, 25, 15009-15009.	3.3	0
353	Revisiting the Bonding Model for Gold(I) Species: The Importance of Pauli Repulsion Revealed in a Gold(I)â€Cyclobutadiene Complex. Angewandte Chemie, 0, , .	2.0	0
354	InnenrÃ⅓cktitelbild: <i>N</i> à€Heterocyclic Carbene Based Nanolayer for Copper Film Oxidation Mitigation (Angew. Chem. 25/2022). Angewandte Chemie, 2022, 134, .	2.0	0