João B P Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1445255/publications.pdf Version: 2024-02-01

LOÃEO R P SOADES

#	Article	IF	CITATIONS
1	Using poly(acrylamideâ€coâ€lauric acid) to remediate oil spills on water. Canadian Journal of Chemical Engineering, 2023, 101, 322-327.	0.9	0
2	Evaluation of candidate polymers to maximize geotechnical performance of oil sands tailings. Canadian Geotechnical Journal, 2022, 59, 359-371.	1.4	3
3	Amylopectin graft copolymers for oil sands tailings treatment. Canadian Journal of Chemical Engineering, 2022, 100, 731-751.	0.9	1
4	Polystyrene magnetic nanocomposite blend: An effective, facile, and economical alternative in oil spill removal applications. Chemosphere, 2022, 286, 131611.	4.2	9
5	Nanodiamond-decorated thin film composite membranes with antifouling and antibacterial properties. Desalination, 2022, 522, 115436.	4.0	31
6	Effect of the branching morphology of a cationic polymer flocculant synthesized by controlled reversibleâ€deactivation radical polymerization on the flocculation and dewatering of dilute mature fine tailings. Canadian Journal of Chemical Engineering, 2022, 100, 790-799.	0.9	3
7	A conceptual multilevel approach to polyolefin reaction engineering. Canadian Journal of Chemical Engineering, 2022, 100, 2432-2474.	0.9	15
8	Preface to the special section in memory of Professor Kenneth F. O'Driscoll. Canadian Journal of Chemical Engineering, 2022, 100, 643-644.	0.9	0
9	A perspective on <i>The Canadian Journal of Chemical Engineering</i> commemorating its 100th volume: 1929–2021. Canadian Journal of Chemical Engineering, 2022, 100, 1983-2010.	0.9	3
10	Torque-based evaluation of mixing optimization and shear sensitivity during transport of flocculated tailings. Minerals Engineering, 2022, 181, 107541.	1.8	0
11	Celebrating the 100th Volume of the CJCE. Canadian Journal of Chemical Engineering, 2022, 100, 1109-1110.	0.9	0
12	The <scp><i>CJCE</i></scp> Perspective Article Special Series. Canadian Journal of Chemical Engineering, 2022, 100, 1669-1669.	0.9	0
13	The implications of 3 <scp>D</scp> â€printed membranes for water and wastewater treatment and resource recovery. Canadian Journal of Chemical Engineering, 2022, 100, 2309-2321.	0.9	11
14	Molecular weight distribution effects of polyacrylamide flocculants on clay aggregate formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129487.	2.3	6
15	Enhanced dewatering of oil sands tailings by a novel water-soluble cationic polymer. Separation and Purification Technology, 2021, 260, 118183.	3.9	12
16	Development of an Integrated Framework for Multiscale, Multiphase Modeling of Industrial Slurryâ€Phase Reactors for Polyethylene Production. Macromolecular Reaction Engineering, 2021, 15, 2000043.	0.9	9
17	Flocculating and dewatering of kaolin suspensions with different forms of poly(acrylamide oâ€diallyl) Tj ETQq1	1.0.7843	14 rgBT /O
18	Prediction of Temperature and Concentration Profiles in an Industrial Polymerization Fluidized Bed Reactor under Condensed-Mode Operation. Industrial & Engineering Chemistry Research, 2021, 60, 990-1013.	1.8	6

#	Article	IF	CITATIONS
19	Ethylene Polymerization Kinetics and Microstructure of Polyethylenes Made with Supported Metallocene Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 9739-9754.	1.8	13
20	Systematic Comparison of Slurry and Gasâ€Phase Polymerization of Ethylene: Part I Thermodynamic Effects. Macromolecular Reaction Engineering, 2021, 15, 2100006.	0.9	8
21	Flocculation Efficiency and Spatial Distribution of Water in Oil Sands Tailings Flocculated with a Partially Hydrophobic Graft Copolymer. ACS Applied Materials & Interfaces, 2021, 13, 43726-43733.	4.0	2
22	Flocculation and dewatering of oil sands tailings with a novel functionalized polyolefin flocculant. Separation and Purification Technology, 2021, 274, 119018.	3.9	9
23	Ethylene/Propylene/Diene Terpolymers Grafted with Poly(methyl acrylate) by Reverse Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2021, 222, 2100189.	1.1	2
24	Recovery of residual bitumen, dewatering, and consolidation of oil sands tailings with poly(acrylamide-co-lauric acid). Minerals Engineering, 2021, 174, 107248.	1.8	6
25	Ethylene/1â€Hexene Copolymerization Kinetics and Microstructure of Copolymers Made with a Supported Metallocene Catalyst. Macromolecular Reaction Engineering, 2021, 15, 2100041.	0.9	8
26	Quantifying the Effect of Polyethylene Molecular Weight, Comonomer Fraction, and Comonomer Type on High-Temperature Thermal Gradient Interaction Chromatography. Macromolecules, 2021, 54, 10883-10890.	2.2	2
27	Water soluble polymeric nanofibres for rapid flocculation and enhanced dewatering of mature fine tailings. Canadian Journal of Chemical Engineering, 2020, 98, 96-103.	0.9	6
28	Fabrication of Highly Permeable and Thermally Stable Reverse Osmosis Thin Film Composite Polyamide Membranes. ACS Applied Materials & Interfaces, 2020, 12, 2916-2925.	4.0	44
29	Polymerization Kinetics and Microstructure of Ethylene/1â€Hexene Copolymers Made with Dual Metallocenes. Macromolecular Reaction Engineering, 2020, 14, 1900032.	0.9	9
30	Thermally stable thin film composite polymeric membranes for water treatment: A review. Journal of Cleaner Production, 2020, 250, 119447.	4.6	71
31	Established Leaders in Chemical Engineering Series. Canadian Journal of Chemical Engineering, 2020, 98, 4-4.	0.9	1
32	Nanodiamond-Enabled Thin-Film Nanocomposite Polyamide Membranes for High-Temperature Water Treatment. ACS Applied Materials & Interfaces, 2020, 12, 53274-53285.	4.0	33
33	Evaluation of adsorption capacities of nanocomposites prepared from bean starch and montmorillonite. Sustainable Chemistry and Pharmacy, 2020, 17, 100292.	1.6	17
34	Using Artificial Intelligence Techniques to Design Ethylene/1â€Olefin Copolymers. Macromolecular Theory and Simulations, 2020, 29, 2000048.	0.6	5
35	Dynamic Monte Carlo Simulation for Chain‣huttling Polymerization of Olefin Block Copolymers in Continuous Stirredâ€Tank Reactor. Macromolecular Reaction Engineering, 2020, 14, 2000030.	0.9	6
36	Mapping the Structure–Property Space of Bimodal Polyethylene Using Response Surface Methods. Part 2: Experimental Investigation of Polymer Microstructure and Yield Estimations. Macromolecular Reaction Engineering, 2020, 14, 2000023.	0.9	4

#	Article	IF	CITATIONS
37	Znâ€essisted cooperative effect for copolymers made by heterodinuclear Feâ^'Ni catalyst. ChemCatChem, 2020, 12, 5809-5818.	1.8	10
38	Cellulose Nanocrystalsâ€Based Polyacrylamide as Flocculating Agent of Mature Fine Tailings. Macromolecular Symposia, 2020, 394, 2000063.	0.4	0
39	Challenges in developing polymer flocculants to improve bitumen quality in non-aqueous extraction processes: an experimental study. Petroleum Science, 2020, 17, 811-821.	2.4	14
40	Amylopectin-graft-polyacrylamide for the flocculation and dewatering of oil sands tailings. Minerals Engineering, 2020, 148, 106196.	1.8	11
41	Aggregate structures formed by hyperbranched functionalized polyethylene (HB f PE) treatment of oil sands tailings. Canadian Journal of Chemical Engineering, 2019, 97, 99-102.	0.9	4
42	Development and application of an amylopectin-graft-poly(methyl acrylate) solidifier for rapid and efficient containment and recovery of heavy oil spills in aqueous environments. Chemosphere, 2019, 236, 124352.	4.2	11
43	Removal of Heavy Metal Water Pollutants (Co ²⁺ and Ni ²⁺) Using Polyacrylamide/Sodium Montmorillonite (PAM/Na-MMT) Nanocomposites. ACS Omega, 2019, 4, 10834-10844.	1.6	68
44	Amorphous to high crystalline PE made by mono and dinuclear Fe-based catalysts. European Polymer Journal, 2019, 119, 229-238.	2.6	26
45	Polymerization Kinetics and the Effect of Reactor Residence Time on Polymer Microstructure. , 2019, , 115-153.		4
46	Ethylene/1-hexene polymerization with bis(cyclopentadienyl) hafnium(IV) dichloride: A fundamental polymerization kinetics model. Journal of Catalysis, 2019, 375, 140-154.	3.1	11
47	Data-Driven Estimation of Significant Kinetic Parameters Applied to the Synthesis of Polyolefins. Processes, 2019, 7, 309.	1.3	6
48	Cooperative effect through different bridges in nickel catalysts for polymerization of ethylene. Applied Organometallic Chemistry, 2019, 33, e4929.	1.7	18
49	Monitoring tailings flocculation performance using hyperspectral imagery. Canadian Journal of Chemical Engineering, 2019, 97, 2465-2471.	0.9	2
50	Water Soluble Polymer Flocculants: Synthesis, Characterization, and Performance Assessment. Macromolecular Materials and Engineering, 2019, 304, 1800526.	1.7	111
51	Simultaneous Deconvolution of the Bivariate Molecular Weight and Chemical Composition Distribution of Ethylene/1â€Hexene Copolymers. Macromolecular Chemistry and Physics, 2019, 220, 1800522.	1.1	11
52	Multifunctional CO ₂ â€switchable polymers for the flocculation of oil sands tailings. Journal of Applied Polymer Science, 2019, 136, 47578.	1.3	4
53	Advanced Polymer Flocculants for Solid–Liquid Separation in Oil Sands Tailings. Macromolecular Rapid Communications, 2019, 40, e1800644.	2.0	24
54	Comparing Longâ€Chain Branching Mechanisms for Ethylene Polymerization with Metallocenes and Other Single‣ite Catalysts: What Simulated Microstructures Can Teach Us. Macromolecular Reaction Engineering, 2019, 13, 1800059.	0.9	8

#	Article	IF	CITATIONS
55	6th ICPC – International Conference on Polyolefin Characterization. Macromolecular Symposia, 2018, 377, 1870004.	0.4	0
56	Mathematical Modeling of Multiple High Temperature Thermal Gradient Interaction Chromatography (mâ€HTâ€TGIC) for Ethylene/1â€Olefin Copolymer Blends. Macromolecular Symposia, 2018, 377, 1700061.	0.4	5
57	Enhanced Flocculation of Oil Sands Mature Fine Tailings Using Hydrophobically Modified Polyacrylamide Copolymers. Global Challenges, 2018, 2, 1700135.	1.8	21
58	Mapping the Structure–Property Space of Bimodal Polyethylenes Using Response Surface Methods. Part 1: Digital Data Investigation. Macromolecular Reaction Engineering, 2018, 12, 1700066.	0.9	6
59	Monte Carlo Simulation of Olefin Block Copolymers: Bivariate Distribution of Molecular Weight and Chemical Composition. Macromolecular Symposia, 2018, 377, 1700060.	0.4	4
60	Synthesis of Metallocene Catalyzed Ethylene 1,7-Octadiene Copolymer: Effect of Copolymerization on Polymer Properties. Macromolecular Research, 2018, 26, 295-304.	1.0	3
61	Polyolefins Made with Dual Metallocene Catalysts: How Microstructure Affects Polymer Properties. Macromolecular Chemistry and Physics, 2018, 219, 1700551.	1.1	6
62	A Methodology for Estimating Kinetic Parameters and Reactivity Ratios of Multiâ€site Type Catalysts Using Polymerization, Fractionation, and Spectroscopic Techniques. Macromolecular Reaction Engineering, 2018, 12, 1700056.	0.9	30
63	Synthesis of low to high molecular weight poly(1-hexene); rigid/flexible structures in a di- and mononuclear Ni-based catalyst series. New Journal of Chemistry, 2018, 42, 8334-8337.	1.4	21
64	Dewatering of Oil Sands Tailings with Novel Chitosan-Based Flocculants. Energy & Fuels, 2018, 32, 5271-5278.	2.5	20
65	A Monte Carlo Method to Quantify the Effect of Reactor Residence Time Distribution on Polyolefins Made with Heterogeneous Catalysts: Part l—Catalyst/Polymer Particle Size Distribution Effects. Macromolecular Reaction Engineering, 2018, 12, 1700031.	0.9	8
66	Application of solidifiers for oil spill containment: A review. Chemosphere, 2018, 194, 837-846.	4.2	83
67	A novel hydrophobically-modified polyelectrolyte for enhanced dewatering of clay suspension. Chemosphere, 2018, 194, 422-431.	4.2	29
68	Synthesis of poly(α-olefins) containing rare short-chain branches by dinuclear Ni-based catalysts. New Journal of Chemistry, 2018, 42, 18288-18296.	1.4	17
69	A Monte Carlo Method to Quantify the Effect of Reactor Residence Time Distribution on Polyolefins Made with Heterogeneous Catalysts: Part Ill—Particle Composition Distribution Effects. Macromolecular Reaction Engineering, 2018, 12, 1800051.	0.9	7
70	A Monte Carlo Method to Quantify the Effect of Reactor Residence Time Distribution on Polyolefins Made with Heterogeneous Catalysts: Part IV—Intraparticle Transfer Resistance Effects. Macromolecular Reaction Engineering, 2018, 12, 1800054.	0.9	7
71	Atypical Multiple Site Behavior of Hafnocene Catalysts in Ethylene/1-Hexene Copolymerization Using Trioctylaluminum and Borate. Macromolecules, 2018, 51, 7061-7076.	2.2	16
72	A Monte Carlo Method to Quantify the Effect of Reactor Residence Time Distribution on Polyolefins Made with Heterogeneous Catalysts: Part II ―Packing Density Effects. Macromolecular Reaction Engineering, 2018, 12, 1800002.	0.9	4

#	Article	IF	CITATIONS
73	Polymer reaction engineering tools to design multifunctional polymer flocculants. Chemosphere, 2018, 210, 156-165.	4.2	10
74	Monitoring polymer flocculation in oil sands tailings: A population balance model approach. Chemical Engineering Journal, 2018, 346, 447-457.	6.6	66
75	Structure Modifications of Hydrolytically-Degradable Polymer Flocculant for Improved Water Recovery from Mature Fine Tailings. Industrial & Engineering Chemistry Research, 2018, 57, 10809-10822.	1.8	17
76	Dynamic Monte Carlo Simulation of Olefin Block Copolymers (OBCs) Produced via Chainâ€Shuttling Polymerization: Effect of Kinetic Rate Constants on Chain Microstructure. Macromolecular Reaction Engineering, 2018, 12, 1800021.	0.9	11
77	Quantifying the effect of polyacrylamide dosage, Na+ and Ca2+ concentrations, and clay particle size on the flocculation of mature fine tailings with robust statistical methods. Chemosphere, 2018, 208, 263-272.	4.2	25
78	10 Years of <i>Macromolecular Reaction Engineering</i> . Macromolecular Reaction Engineering, 2017, 11, 1600075.	0.9	0
79	Dewatering Oil Sands Mature Fine Tailings (MFTs) with Poly(acrylamide- <i>co</i> -diallyldimethylammonium chloride): Effect of Average Molecular Weight and Copolymer Composition. Industrial & Engineering Chemistry Research, 2017, 56, 1256-1266.	1.8	29
80	Flocculation of oil sands tailings by hyperbranched functionalized polyethylenes (HBfPE). Minerals Engineering, 2017, 108, 71-82.	1.8	40
81	Understanding the Microstructure of Living Ethylene/1â€Octene Block Copolymers with Dynamic Monte Carlo Simulation. Macromolecular Theory and Simulations, 2017, 26, 1700012.	0.6	3
82	Starchâ€based composites using mature fine tailings as fillers. Canadian Journal of Chemical Engineering, 2017, 95, 1901-1908.	0.9	5
83	On the Robustness of Forward and Inverse Artificial Neural Networks for the Simulation of Ethylene/1â€Butene Copolymerization. Macromolecular Theory and Simulations, 2017, 26, 1700042.	0.6	10
84	Dewatering Oil Sands Tailings with Degradable Polymer Flocculants. ACS Applied Materials & Interfaces, 2017, 9, 36290-36300.	4.0	36
85	Investigation on the flocculation of oil sands mature fine tailings with alkoxysilanes. Minerals Engineering, 2017, 111, 90-99.	1.8	19
86	Copolymerization of Ethylene with 1,9â€Decadiene: Part II—Prediction of Molecular Weight Distributions. Macromolecular Theory and Simulations, 2017, 26, 1700040.	0.6	10
87	Chemical engineering in Canada: A special <i>Can. J. Chem. Eng</i> . virtual issue. Canadian Journal of Chemical Engineering, 2017, 95, 1432-1433.	0.9	1
88	Joint Effect of Poly(ethyhleneâ€ <i>co</i> â€1â€octene) Chain Length and 1â€Octene Fraction on Highâ€Temperature Thermal Gradient Interaction Chromatography. Macromolecular Chemistry and Physics, 2017, 218, 1600332.	1.1	9
89	Molecular Weight Distribution of Ethylene/1â€Olefin Copolymers: Generalized Bimodality Criterion. Macromolecular Theory and Simulations, 2017, 26, 1600060.	0.6	4
90	Ethylene Polymerization with a Hafnocene Dichloride Catalyst Using Trioctyl Aluminum and Borate: Polymerization Kinetics and Polymer Characterization. Macromolecular Reaction Engineering, 2017, 11, 1600044.	0.9	6

#	Article	IF	CITATIONS
91	Copolymerization of Ethylene with 1,9â€Decadiene: Part I – Prediction of Average Molecular Weights and Longâ€Chain Branching Frequencies. Macromolecular Theory and Simulations, 2017, 26, 1600059.	0.6	10
92	Effect of Prepolymerization on the Kinetics of Ethylene Polymerization and Ethylene/1â€Hexene Copolymerization with a Ziegler–Natta Catalyst in Slurry Reactors. Macromolecular Reaction Engineering, 2016, 10, 463-478.	0.9	9
93	Estimation of Apparent Kinetic Constants of Individual Site Types for the Polymerization of Ethylene and αâ€olefins with Ziegler–Natta Catalysts. Macromolecular Reaction Engineering, 2016, 10, 551-566.	0.9	24
94	Can We Make Better Polyurethane Composite Foams with Oil Sands Mature Fine Tailing?. Macromolecular Materials and Engineering, 2016, 301, 383-389.	1.7	7
95	Cationic Hydrolytically Degradable Flocculants with Enhanced Water Recovery for Oil Sands Tailings Remediation. Macromolecular Materials and Engineering, 2016, 301, 1248-1254.	1.7	23
96	Understanding the Formation of Linear Olefin Block Copolymers with Dynamic Monte Carlo Simulation. Macromolecular Reaction Engineering, 2016, 10, 535-550.	0.9	11
97	Inâ€situ production of polyethylene/cellulose nanocrystal composites. Canadian Journal of Chemical Engineering, 2016, 94, 2107-2113.	0.9	13
98	Using acrylamide/propylene oxide copolymers to dewater and densify mature fine tailings. Minerals Engineering, 2016, 95, 29-39.	1.8	50
99	Estimation of Polymerization Conditions Needed to Make Ethylene/1-olefin Copolymers with Specific Microstructures Using Artificial Neural Networks. Macromolecular Reaction Engineering, 2016, 10, 215-232.	0.9	17
100	Analysis of Ethylene/1-Olefin Copolymers Made with Ziegler-Natta Catalysts by Deconvolution of Molecular Weight and Average Short Chain Branching Distributions. Macromolecular Reaction Engineering, 2016, 10, 206-214.	0.9	22
101	Comparison of Different Dynamic Monte Carlo Methods for the Simulation of Olefin Polymerization. Macromolecular Symposia, 2016, 360, 160-178.	0.4	10
102	Quantifying the Copolymerization Kinetics of Ethylene and 1-Octene Catalyzed with <i>rac</i> -Et(Ind) ₂ ZrCl ₂ in a Solution Reactor. Macromolecules, 2016, 49, 2448-2457.	2.2	12
103	High Temperature Thermal Gradient Interaction Chromatography (HTâ€TGIC) of Ethylene/1â€Octene Copolymers: Model Development and Validation. Macromolecular Symposia, 2015, 356, 54-60.	0.4	4
104	High Temperature Thermal Gradient Interaction Chromatography (HTâ€∓GIC) for Blends of Ethylene/1â€Octene Copolymers: A Mathematical Model. Macromolecular Symposia, 2015, 354, 361-366.	0.4	4
105	Effect of Column Type on Polyolefin Fractionation by Highâ€Temperature Thermal Gradient Interaction Chromatography. Macromolecular Symposia, 2015, 356, 10-18.	0.4	3
106	The Influence of Tailings Composition on Flocculation. Canadian Journal of Chemical Engineering, 2015, 93, 1514-1523.	0.9	64
107	Effect of Solvent Type on Highâ€Temperature Thermal Gradient Interaction Chromatography of Polyethylene and Ethylene–1â€Octene Copolymers. Macromolecular Chemistry and Physics, 2015, 216, 38-48.	1.1	7
108	Mathematical Modeling of Crystallization Elution Fractionation of Ethylene/1â€Octene Copolymers. Macromolecular Chemistry and Physics, 2015, 216, 621-635.	1.1	8

#	Article	IF	CITATIONS
109	When Polymer Reaction Engineers Play Dice: Applications of Monte Carlo Models in PRE. Macromolecular Reaction Engineering, 2015, 9, 141-185.	0.9	105
110	Waterâ€soluble polymers for oil sands tailing treatment: A Review. Canadian Journal of Chemical Engineering, 2015, 93, 888-904.	0.9	104
111	Correlation of Polymerization Conditions with Thermal and Mechanical Properties of Polyethylenes Made with Ziegler-Natta Catalysts. International Journal of Polymer Science, 2014, 2014, 1-10.	1.2	16
112	Effect of Polymerization Conditions on Thermal and Mechanical Properties of Ethylene/1-Butene Copolymer Made with Ziegler-Natta Catalysts. International Journal of Polymer Science, 2014, 2014, 1-10.	1.2	9
113	Effect of long chain branching on the properties of polyethylene synthesized via metallocene catalysis. Polymer Science - Series B, 2014, 56, 707-720.	0.3	6
114	Effect of Varying Hydrogen Concentration, External Donor Concentration, and Temperature on Propylene Polymerization Kinetics and Microstructure of Polypropylene Made with a 4th Generation Ziegler-Natta Catalyst. Macromolecular Reaction Engineering, 2014, 8, 723-735.	0.9	9
115	Characterization of Ethylene/αâ€Olefin Copolymers Using Highâ€Temperature Thermal Gradient Interaction Chromatography. Macromolecular Chemistry and Physics, 2014, 215, 465-475.	1.1	19
116	The Use of Instantaneous Distributions in Polymerization Reaction Engineering. Macromolecular Reaction Engineering, 2014, 8, 235-259.	0.9	37
117	Fractionation of Ethylene/1-Octene Copolymers by High-Temperature Thermal Gradient Interaction Chromatography. Industrial & amp; Engineering Chemistry Research, 2014, 53, 9228-9235.	1.8	22
118	Chemical Composition Distribution and Temperature Rising Elution Fractionation of Linear Olefin Block Copolymers. Macromolecular Symposia, 2013, 330, 123-131.	0.4	7
119	Effect of Hydrogen and External Donor on the Microstructure of Polypropylene Made with a 4 th Generation Ziegler–Natta Catalyst. Macromolecular Reaction Engineering, 2013, 7, 135-145.	0.9	15
120	Inâ€Depth Investigation of Ethylene Solution Polymerization Kinetics With <i>rac</i> â€Et(Ind) ₂ ZrCl ₂ /MAO. Macromolecular Chemistry and Physics, 2013, 214, 246-262.	1.1	9
121	Analysis of Slurryâ€ <scp>P</scp> hase Coâ€ <scp>P</scp> olymerization of Ethylene and 1â€ <scp>B</scp> utene by Ziegler– <scp>N</scp> atta Catalysts Part 1: Experimental Activity Profiles. Macromolecular Reaction Engineering, 2013, 7, 350-361.	0.9	6
122	Direct production of ultra-high molecular weight polyethylene with oriented crystalline microstructures. Journal of Molecular Catalysis A, 2013, 366, 74-83.	4.8	24
123	Ethylene Polymerization and Ethylene/1-Octene Copolymerization withrac-Dimethylsilylbis(indenyl)hafnium Dimethyl Using Trioctyl Aluminum and Borate: A Polymerization Kinetics Investigation. Macromolecules, 2013, 46, 1312-1324.	2.2	14
124	Effect of Operating Conditions on Dynamic Crystallization of Ethylene/1â€Octene Copolymers. Macromolecular Chemistry and Physics, 2013, 214, 2591-2601.	1.1	7
125	Heterogeneous Ethylene and Alphaâ€Olefin Copolymerization Using Zirconocene Aluminohydride Complexes. Macromolecular Symposia, 2013, 325-326, 71-76.	0.4	4
126	Mathematical Model of Dynamic Crystallization of Ethylene/1â€ <scp>O</scp> ctene Copolymers. Macromolecular Symposia, 2013, 330, 132-141.	0.4	7

#	Article	IF	CITATIONS
127	Synthesis of Polyolefins with Combined Singleâ€6ite Catalysts. Macromolecular Symposia, 2012, 313-314, 8-18.	0.4	10
128	Polyolefin Microstructural Characterization. , 2012, , 15-52.		2
129	Developing Models for Industrial Reactors. , 2012, , 311-323.		Ο
130	Evaluating the Effects of Precious Metal Distribution along a Monolith-Supported Catalyst for CO oxidation. Industrial & Engineering Chemistry Research, 2012, 51, 6672-6679.	1.8	10
131	Ethylene Homopolymerization Kinetics with a Constrained Geometry Catalyst in a Solution Reactor. Macromolecules, 2012, 45, 1777-1791.	2.2	31
132	Mathematical Modeling of Temperature Rising Elution Fractionation (TREF) of Polyethylene and Ethylene/1â€Olefin Copolymers. Macromolecular Chemistry and Physics, 2012, 213, 1892-1906.	1.1	13
133	3rd ICPC. Macromolecular Symposia, 2012, 312, ix.	0.4	Ο
134	Effect of Chain Microstructure and Cooling Rate on Crystaf Calibration Curves: An Experimental Study. Macromolecular Symposia, 2012, 312, 191-196.	0.4	0
135	Monte Carlo Simulation of the Microstructure of Linear Olefin Block Copolymers. Macromolecular Symposia, 2012, 312, 167-173.	0.4	16
136	Crystallization Elution Fractionation of LLDPEs Made with Metallocene Catalysts. Macromolecular Symposia, 2012, 312, 43-50.	0.4	11
137	Effect of Hydrogen, Electron Donor, and Polymerization Temperature on Poly(propylene) Microstructure. Macromolecular Symposia, 2012, 312, 72-80.	0.4	8
138	The Integrated Deconvolution Estimation Model: Effect of Inter‣aboratory ¹³ C NMR Analysis on IDEM Performance. Macromolecular Reaction Engineering, 2012, 6, 189-199.	0.9	6
139	Effect of Hydrogen and External Donor on Propylene Polymerization Kinetics with a 4 th â€Generation Zieglerâ€Natta Catalyst. Macromolecular Reaction Engineering, 2012, 6, 265-274.	0.9	29
140	Supported singleâ€site catalysts for slurry and gasâ€phase olefin polymerisation. Canadian Journal of Chemical Engineering, 2012, 90, 646-671.	0.9	51
141	Production of Ethylene/α-Olefin/1,9-Decadiene Copolymers with Complex Microstructures Using a Two-Stage Polymerization Process. Macromolecules, 2011, 44, 7926-7939.	2.2	14
142	Mathematical Modeling of the Microstructure of Poly(propylene) Made with Zieglerâ€Natta Catalysts in the Presence of Electron Donors. Macromolecular Reaction Engineering, 2011, 5, 96-116.	0.9	14
143	Bimodality Criterion for the Chemical Composition Distribution of Ethylene/1â€Olefin Copolymers: Theoretical Development and Experimental Validation. Macromolecular Reaction Engineering, 2011, 5, 198-210.	0.9	11
144	A Polymerization Kinetics Comparison between a Metallocene Catalyst Activated by Tetrakis(pentafluorophenyl) Borate and MAO for the Polymerization of Ethylene in a Semiâ€batch Solution Reactor. Macromolecular Reaction Engineering, 2011, 5, 418-430.	0.9	14

#	Article	IF	CITATIONS
145	Simultaneous Deconvolution of Molecular Weight and Chemical Composition Distribution of Ethylene/1â€Olefin Copolymers: Strategy Validation and Comparison. Macromolecular Reaction Engineering, 2011, 5, 549-562.	0.9	21
146	The Integrated Deconvolution Estimation Model: Estimation of Reactivity Ratios per Site Type for Ethylene/1â€Butene Copolymers Made with a Heterogeneous Zieglerâ€Natta Catalyst. Macromolecular Reaction Engineering, 2011, 5, 587-598.	0.9	15
147	Cocrystallization of ethylene/1â€octene copolymer blends during crystallization analysis fractionation and crystallization elution fractionation. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 678-684.	2.4	20
148	Synthesis of Ethylene/Acrylonitrile Composite Elastomers with Nanosized Polyacrylonitrile Domains Using αâ€Đimineâ€{ <i>N,N</i>] Nickel Dichloride/EASC. Macromolecular Chemistry and Physics, 2011, 212, 715-722.	1.1	1
149	Polyethylene/Clay Nanocomposites Made with Metallocenes Supported on Different Organoclays. Macromolecular Chemistry and Physics, 2011, 212, 216-228.	1.1	17
150	Ethylene/1â€Hexene Copolymers Produced with MAO/(nBuCp) ₂ ZrCl ₂ Supported on SBAâ€15 Materials with Different Pore Sizes. Macromolecular Chemistry and Physics, 2011, 212, 1590-1599.	1.1	24
151	An Efficient In Situ Polymerization Method for the Production of Polyethylene/Clay Nanocomposites: Effect of Polymerization Conditions on Particle Morphology. Macromolecular Chemistry and Physics, 2011, 212, 2017-2028.	1.1	6
152	Particle Growth During the Polymerisation of Olefins on Supported Catalysts, 1 – Nascent Polymer Structures. Macromolecular Reaction Engineering, 2010, 4, 40-64.	0.9	117
153	The Integrated Deconvolution Estimation Model: A Parameter Estimation Method for Ethylene/ <i>α</i> â€Olefin Copolymers Made with Multipleâ€Site Catalysts. Macromolecular Reaction Engineering, 2010, 4, 578-590.	0.9	15
154	Preparation of Polyethylene/Montmorillonite Nanocomposites Through in situ Polymerization Using a Montmorillonite‣upported Nickel Diimine Catalyst. Macromolecular Chemistry and Physics, 2010, 211, 1026-1034.	1.1	9
155	Ethylene slurry polymerization using nickel diimine catalysts covalently-attached onto MgCl2-based supports. Polymer, 2010, 51, 2271-2276.	1.8	19
156	Supported hybrid early and late transition metal catalysts for the synthesis of polyethylene with tailored molecular weight and chemical composition distributions. Polymer, 2010, 51, 4713-4725.	1.8	24
157	Synthesis of Supported Nickel Diimine Catalysts for Ethylene Slurry Polymerization. Macromolecular Chemistry and Physics, 2009, 210, 1979-1988.	1.1	26
158	Simultaneous Deconvolution of the Bivariate Distribution of Molecular Weight and Chemical Composition of Polyolefins Made with Zieglerâ€Natta Catalysts. Macromolecular Rapid Communications, 2009, 30, 384-393.	2.0	37
159	Dynamic Monte Carlo Simulation of ATRP in a Batch Reactor. Macromolecular Theory and Simulations, 2009, 18, 307-316.	0.6	39
160	Application of a crystallization kinetics model to simulate the effect of operation conditions on Crystaf profiles and calibration curves. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 866-876.	2.4	15
161	Gradient Copolymers by ATRP in Semibatch Reactors: Dynamic Monte Carlo Simulation. Macromolecular Reaction Engineering, 2009, 3, 148-159.	0.9	39
162	Morphology and Thermal Characteristics of Polyethylene Nanocomposites Made Using Montmorilloniteâ€6upported Cp ₂ ZrCl ₂ and Niâ€Diimine Precatalysts. Macromolecular Reaction Engineering, 2009, 3, 543-555.	0.9	1

#	Article	IF	CITATIONS
163	CRYSTAF Analysis of Polyethylene Synthesized with Phillips Catalyst. Macromolecular Symposia, 2009, 285, 74-80.	0.4	6
164	Influence of Metallocene Type on the Order of Ethylene Polymerization and Catalyst Deactivation Rate in a Solution Reactor. Macromolecular Symposia, 2009, 285, 101-114.	0.4	8
165	Simulation of Crystallization Analysis Fractionation (Crystaf) of Linear Olefin Block Copolymers. Macromolecular Symposia, 2009, 282, 205-215.	0.4	8
166	Simultaneous Deconvolution of Molecular Weight Distribution and Chemical Composition Distribution of Ethylene/1â€Olefin Copolymers Synthesized with Multipleâ€Siteâ€Type Catalytic Systems. Macromolecular Symposia, 2009, 282, 167-174.	0.4	22
167	Simulation of Propylene Polymerization in Industrial Reactors Using Zieglerâ€Natta Catalysts in the Presence of Electron Donors. Macromolecular Symposia, 2009, 285, 8-22.	0.4	7
168	Gasâ€Phase Polymerization with Transition Metal Catalysts Supported on Montmorillonite – A Particle Morphological Study. Macromolecular Symposia, 2009, 285, 64-73.	0.4	4
169	Simultaneous Deconvolution of the Molecular Weight and Chemical Composition Distribution of Polyolefins Made with Zieglerâ€Natta Catalysts. Macromolecular Symposia, 2009, 285, 81-89.	0.4	20
170	The First International Conference on Polyolefin Characterization. Macromolecular Materials and Engineering, 2008, 293, 244-245.	1.7	2
171	Simulation of Polymerization and Long Chain Branch Formation in a Semiâ€Batch Reactor Using Two Singleâ€Site Catalysts. Macromolecular Reaction Engineering, 2008, 2, 37-57.	0.9	8
172	Chain Length Distributions of Polyolefins Made in Stoppedâ€Flow Reactors for Nonâ€Instantaneous Site Activation. Macromolecular Reaction Engineering, 2008, 2, 115-125.	0.9	11
173	Production of Longâ€Chain Branched Polyolefins with Two Singleâ€Site Catalysts: Comparing CSTR and Semiâ€Batch Performance. Macromolecular Reaction Engineering, 2008, 2, 529-550.	0.9	14
174	Steady State Simulation of Ethylene Polymerization Using Multiple‣ite Coordination Catalysts. Macromolecular Symposia, 2007, 259, 110-115.	0.4	2
175	A Mathematical Model for the Kinetics of Crystallization in Crystaf. Macromolecular Symposia, 2007, 257, 94-102.	0.4	22
176	An Overview of Important Microstructural Distributions for Polyolefin Analysis. Macromolecular Symposia, 2007, 257, 1-12.	0.4	49
177	Characterization of Ethyleneâ€1â€Hexene Copolymers Made with Supported Metallocene Catalysts: Influence of Support Type. Macromolecular Symposia, 2007, 257, 103-111.	0.4	28
178	Dynamic Monte Carlo Simulation of Olefin Polymerization in Stoppedâ€Flow Reactors. Macromolecular Symposia, 2007, 260, 189-196.	0.4	6
179	Synthesis of Low Density Poly(ethylene) Using Nickel Iminophosphonamide Complexes. Macromolecules, 2007, 40, 2993-3004.	2.2	37
180	Atom transfer radical polymerization (ATRP) of styrene and acrylonitrile with monofunctional and bifunctional initiators. Polymer, 2007, 48, 1954-1961.	1.8	29

#	Article	IF	CITATIONS
181	A kinetic study of metallocene-catalyzed ethylene polymerization using different aluminoxane cocatalysts. Journal of Polymer Science Part A, 2007, 45, 1677-1690.	2.5	14
182	Atom-transfer radical polymerization of styrene with bifunctional and monofunctional initiators: Experimental and mathematical modeling results. Journal of Polymer Science Part A, 2007, 45, 2212-2224.	2.5	29
183	Mathematical modeling of crystallization analysis fractionation of ethylene/1-hexene copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1010-1017.	2.4	25
184	Chain Length Distributions of Polyolefins Made with Coordination Catalysts at Very Short Polymerization Times – Analytical Solution and Monte Carlo Simulation. Macromolecular Reaction Engineering, 2007, 1, 53-67.	0.9	29
185	Dynamic Monte Carlo Simulation of ATRP with Bifunctional Initiators. Macromolecular Reaction Engineering, 2007, 1, 95-105.	0.9	33
186	Prediction of Chain Length Distribution of Polystyrene Made in Batch Reactors with Bifunctional Free-Radical Initiators Using Dynamic Monte Carlo Simulation. Macromolecular Reaction Engineering, 2007, 1, 364-383.	0.9	29
187	Mathematical Modeling of Atom-Transfer Radical Copolymerization. Macromolecular Reaction Engineering, 2007, 1, 468-479.	0.9	27
188	A Single-Gallery Model for the In Situ Production of Polyethylene-Clay Nanocomposites. Macromolecular Symposia, 2006, 243, 277-286.	0.4	1
189	Dynamic Monte Carlo Simulation of Graft Copolymers Made with ATRP and Metallocene Catalysts. Macromolecular Symposia, 2006, 243, 83-90.	0.4	12
190	Mathematical modeling of crystallization analysis fractionation (Crystaf) of polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2749-2759.	2.4	24
191	Modeling of Atom Transfer Radical Polymerization with Bifunctional Initiators: Diffusion Effects and Case Studies. Macromolecular Chemistry and Physics, 2006, 207, 469-483.	1.1	21
192	Ethylene and Propylene Polymerization Using In Situ Supported Me2Si(Ind)2ZrCl2 Catalyst: Experimental and Theoretical Study. Macromolecular Materials and Engineering, 2006, 291, 279-287.	1.7	11
193	Dynamic Monte Carlo Simulation of Atom-Transfer Radical Polymerization. Macromolecular Materials and Engineering, 2006, 291, 993-1003.	1.7	57
194	Mathematical Modeling of Atom-Transfer Radical Polymerization Using Bifunctional Initiators. Macromolecular Theory and Simulations, 2006, 15, 198-214.	0.6	18
195	Effects of the type and concentration of alkylaluminum cocatalysts on the molar mass of polypropylene made within situ supported metallocene catalysts. Journal of Applied Polymer Science, 2005, 95, 1050-1055.	1.3	17
196	Steady-State Model for Olefin Polymerization With a Two-Site Vanadium Catalyst in a Continuous Stirred-Tank Reactor. Macromolecular Materials and Engineering, 2005, 290, 256-271.	1.7	7
197	Microstructural Characterization of Molecular Weight Fractions of Ethylene/1,7-Octadiene Copolymers Made with a Constrained Geometry Catalyst. Macromolecular Materials and Engineering, 2005, 290, 584-591.	1.7	19
198	Polyolefin Reaction Engineering - An Overview of Recent Developments. Macromolecular Materials and Engineering, 2005, 290, 507-510.	1.7	14

#	Article	IF	CITATIONS
199	Crystallization analysis fractionation. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1557-1570.	2.4	58
200	Monte Carlo Simulation of Long-Chain Branched Polyolefins Made with Dual Catalysts:Â A Classification of Chain Structures in Topological Branching Families. Industrial & Engineering Chemistry Research, 2005, 44, 2461-2468.	1.8	18
201	Fractionation of Semicrystalline Polymers by Crystallization Analysis Fractionationand Temperature Rising Elution Fractionation. Advances in Polymer Science, 2005, , 1-54.	0.4	129
202	Crystallization analysis fractionation of ethene/1-hexene copolymers made with the MAO-activated dual-site (1,2,4-Me3Cp)2ZrCl2 and (Me5Cp)2ZrCl2 system. Polymer, 2004, 45, 7853-7861.	1.8	12
203	Effect of cocatalyst on the chain microstructure of polyethylene made with CGC-Ti/MAO/B(C6F5)3. Journal of Polymer Science Part A, 2004, 42, 3055-3061.	2.5	15
204	Cocrystallization of Blends of Ethylene/1-Olefin Copolymers: An Investigation with Crystallization Analysis Fractionation(Crystaf). Macromolecular Chemistry and Physics, 2004, 205, 771-777.	1.1	37
205	Polypropylene Made with In-Situ Supported Me2Si(Ind)2ZrCl2 and Me2Si(2-Me-Ind)2ZrCl2 Catalysts: Properties Comparison. Macromolecular Chemistry and Physics, 2004, 205, 1525-1529.	1.1	14
206	Polyolefins with Long Chain Branches Made with Single-Site Coordination Catalysts: A Review of Mathematical Modeling Techniques for Polymer Microstructure. Macromolecular Materials and Engineering, 2004, 289, 70-87.	1.7	45
207	Macromolecular Reaction Engineering. Macromolecular Materials and Engineering, 2004, 289, 11-11.	1.7	1
208	Analysis of the chemical composition distribution of ethylene/α-olefin copolymers by solution differential scanning calorimetry: an alternative technique to Crystaf. Polymer, 2004, 45, 4787-4799.	1.8	32
209	Polymerization reaction engineering: past, present and future. Macromolecular Symposia, 2004, 206, 1-14.	0.4	19
210	Chemical composition distribution of multicomponent copolymer chains. Macromolecular Symposia, 2004, 206, 69-78.	0.4	7
211	An experimental and numerical study on crystallization analysis fractionation(Crystaf). Macromolecular Symposia, 2004, 206, 57-68.	0.4	6
212	Molecular Weight and Long Chain Branch Distributions of Branch-Block Olefinic Thermoplastic Elastomers. Macromolecular Theory and Simulations, 2003, 12, 386-400.	0.6	11
213	Evolution of Molecular Weight and Long Chain Branch Distributions in Olefin–Diene Copolymerization. Macromolecular Theory and Simulations, 2003, 12, 582-592.	0.6	16
214	Comparing Strategies for the Synthesis of Polyolefinic Thermoplastic Elastomers via Macromonomer Incorporation. Macromolecular Theory and Simulations, 2003, 12, 142-152.	0.6	11
215	Chemical Composition Distribution of Multicomponent Copolymers. Macromolecular Theory and Simulations, 2003, 12, 229-236.	0.6	24
216	HDPE/LLDPE reactor blends with bimodal microstructures—Part II: rheological properties. Polymer, 2003, 44, 177-185.	1.8	50

#	Article	IF	CITATIONS
217	Polyethylene–clay hybrid nanocomposites: in situ polymerization using bifunctional organic modifiers. Polymer, 2003, 44, 5317-5321.	1.8	85
218	Dimerization and polymerization of ethylene catalyzed by nickel complexes bearing multidentate amino-functionalized indenyl ligands. Journal of Molecular Catalysis A, 2003, 193, 51-58.	4.8	29
219	Polypropylene obtained with in situ supported metallocene catalysts. Journal of Molecular Catalysis A, 2003, 202, 127-134.	4.8	16
220	Effect of operation parameters on temperature rising elution fractionation and crystallization analysis fractionation. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1762-1778.	2.4	50
221	Effect of molecular weight and average comonomer content on the crystallization analysis fractionation (Crystaf) of ethylene α-olefin copolymers. Polymer, 2003, 44, 2393-2401.	1.8	46
222	Derivation of the Distributions of Long Chain Branching, Molecular Weight, Seniority, and Priority for Polyolefins Made with Two Metallocene Catalysts. Macromolecules, 2003, 36, 10037-10051.	2.2	29
223	Characterization and Modeling of Metallocene-Based Branchâ^'Block Copolymers. Macromolecules, 2002, 35, 9586-9594.	2.2	35
224	Mathematical Modeling of the Long-Chain Branch Structure of Polyolefins Made with Two Metallocene Catalysts: An Algebraic Solution. Macromolecular Theory and Simulations, 2002, 11, 184-198.	0.6	27
225	Polyethylene Made with Combinations of Single-Site-Type Catalysts: Monte Carlo Simulation of Long-Chain Branch Formation. Macromolecular Theory and Simulations, 2002, 11, 222-232.	0.6	38
226	Distribution of the Longest Ethylene Sequence in Ethylene/ $\hat{l}\pm$ -Olefin Copolymers Synthesized with Single-Site-Type Catalysts. Macromolecular Theory and Simulations, 2002, 11, 326.	0.6	41
227	Long-Chain Branching with Metallocene Catalysts: Is a Purely Kinetic Mechanism for Terminal Branching Sufficient?. Macromolecular Theory and Simulations, 2002, 11, 939-943.	0.6	12
228	Title is missing!. Macromolecular Chemistry and Physics, 2002, 203, 1895-1905.	1.1	17
229	Ethylene/1-octene copolymerization studies within situ supported metallocene catalysts: Effect of polymerization parameters on the catalyst activity and polymer microstructure. Journal of Polymer Science Part A, 2002, 40, 4426-4451.	2.5	44
230	Round-robin experiment in high-temperature gel permeation chromatography. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 905-921.	2.4	29
231	Ethylene/1-hexene copolymers synthesized with a single-site catalyst: Crystallization analysis fractionation, modeling, and reactivity ratio estimation. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2595-2611.	2.4	67
232	HDPE/LLDPE reactor blends with bimodal microstructures—part I: mechanical properties. Polymer, 2002, 43, 7345-7365.	1.8	44
233	SIMULATION OF BRANCHING DISTRIBUTION OF POLYETHYLENE MADE WITH NI-DIIMINE CATALYSTS. AN ELEGANT SOLUTION USING POPULATION BALANCES. Polymer-Plastics Technology and Engineering, 2001, 9, 199-223.	0.7	9
234	Production of polyolefins with controlled long chain branching and molecular weight distributions using mixed metallocene catalysts. Macromolecular Symposia, 2001, 173, 179-194.	0.4	29

#	Article	IF	CITATIONS
235	Kinetic investigation of ethylene polymerization catalyzed by nickel-diimine catalysts. Journal of Molecular Catalysis A, 2001, 165, 55-66.	4.8	24
236	Crystallizability of ethylene homopolymers by crystallization analysis fractionation. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1616-1628.	2.4	37
237	Modeling of fractionation in CRYSTAF using Monte Carlo simulation of crystallizable sequence lengths: Ethylene/1-octene copolymers synthesized with single-site-type catalysts. Journal of Applied Polymer Science, 2001, 80, 2200-2206.	1.3	46
238	Polyethylene Made with In Situ Supported Ni-Diimine/SMAO: Replication Phenomenon and Effect of Polymerization Conditions on Polymer Microstructure and Morphology. Macromolecular Chemistry and Physics, 2001, 202, 3237-3247.	1.1	55
239	Single particle modelling for olefin polymerization on supported catalysts: A review and proposals for future developments. Chemical Engineering Science, 2001, 56, 3931-3949.	1.9	226
240	Mathematical modelling of the microstructure of polyolefins made by coordination polymerization: a review. Chemical Engineering Science, 2001, 56, 4131-4153.	1.9	148
241	Effect of polymerization temperature and pressure on the microstructure of Ni-diimine-catalyzed polyethylene: parameter identification for Monte-Carlo simulation. Chemical Engineering Science, 2001, 56, 4181-4190.	1.9	28
242	Observations on HDPE Characterization with a Microcalorimeter as a Complementary Tool to TREF and CRYSTAF. Polymer-Plastics Technology and Engineering, 2000, 8, 159-165.	0.7	3
243	Variation of molecular weight distribution (MWD) and short chain branching distribution (SCBD) of ethylene/1-hexene copolymers produced with different in-situ supported metallocene catalysts. Macromolecular Chemistry and Physics, 2000, 201, 340-348.	1.1	46
244	Effect of hydrogen on ethylene polymerization using in-situ supported metallocene catalysts. Macromolecular Chemistry and Physics, 2000, 201, 552-557.	1.1	48
245	Environmental stress cracking resistance of polyethylene: The use of CRYSTAF and SEC to establish structure-property relationships. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1267-1275.	2.4	66
246	Polymerization mechanism forin situ supported metallocene catalysts. Journal of Polymer Science Part A, 2000, 38, 462-468.	2.5	61
247	Copolymerization of ethylene and ?-olefins with combined metallocene catalysts. I. A formal criterion for molecular weight bimodality. Journal of Polymer Science Part A, 2000, 38, 1408-1416.	2.5	69
248	Copolymerization of ethylene and ?-olefins with combined metallocene catalysts. II. Mathematical modeling of polymerization with single metallocene catalysts. Journal of Polymer Science Part A, 2000, 38, 1417-1426.	2.5	30
249	Copolymerization of ethylene and ?-olefins with combined metallocene catalysts. III. Production of polyolefins with controlled microstructures. Journal of Polymer Science Part A, 2000, 38, 1427-1432.	2.5	57
250	Effect of experimental conditions on ethylene polymerization within-situ-supported metallocene catalyst. Journal of Polymer Science Part A, 2000, 38, 1803-1810.	2.5	33
251	Measurement and mathematical modeling of molecular weight and chemical composition distributions of ethylene/-olefin copolymers synthesized with a heterogeneous Ziegler-Natta catalyst. Macromolecular Chemistry and Physics, 2000, 201, 1226-1234.	1.1	57
252	Using alkylaluminium activators to tailor short chain branching distributions of ethylene/1-hexene copolymers produced with in-situ supported metallocene catalysts. Macromolecular Chemistry and Physics, 2000, 201, 2195-2202.	1.1	26

#	Article	IF	CITATIONS
253	Monte-Carlo simulation of branching distribution in Ni-diimine catalyzed polyethylene. AICHE Journal, 2000, 46, 1234-1240.	1.8	25
254	Effect of prepolymerization and hydrogen pressure on the microstructure of ethylene/1-hexene copolymers made with MgCl2-supported TiCl3 catalysts. European Polymer Journal, 2000, 36, 3-11.	2.6	39
255	Mathematical Modelling and Control of Chemical Composition Distribution of Ethylene/α-Olefin Copolymers Made with Single and Combined Metallocene Catalysts. Polymer-Plastics Technology and Engineering, 2000, 8, 241-270.	0.7	11
256	Copolymerization of ethylene and $\hat{l}\pm$ -olefins with combined metallocene catalysts. II. Mathematical modeling of polymerization with single metallocene catalysts. , 2000, 38, 1417.		1
257	Recipes for synthesizing polyolefins with tailor-made molecular weight, polydispersity index, long-chain branching frequencies, and chemical composition using combined metallocene catalyst systems in a CSTR at steady state. Journal of Applied Polymer Science, 1999, 71, 1753-1770.	1.3	57
258	Polyolefin analysis by single-step crystallization fractionation. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 539-552.	2.4	30
259	High-density polyethylene fractionation with supercritical propane. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 553-560.	2.4	15
260	Synthesis of tailor-made polyethylene through the control of polymerization conditions using selectively combined metallocene catalysts in a supported system. Journal of Polymer Science Part A, 1999, 37, 331-339.	2.5	63
261	Copolymerization of ethylene and 1-hexene with supported metallocene catalysts: Effect of support treatment. Macromolecular Rapid Communications, 1999, 20, 347-350.	2.0	40
262	Combined metallocene catalysts: an efficient technique to manipulate long-chain branching frequency of polyethylene. Macromolecular Rapid Communications, 1999, 20, 541-545.	2.0	54
263	The influence of the Ti3+ species on the microstructure of ethylene/1-hexene copolymers. Macromolecular Chemistry and Physics, 1999, 200, 1298-1305.	1.1	17
264	Copolymerization of ethylene and 1-hexene with in-situ supported Et[Ind]2ZrCl2. Macromolecular Chemistry and Physics, 1999, 200, 2372-2376.	1.1	46
265	Synthesis of tailor-made polyethylene through the control of polymerization conditions using selectively combined metallocene catalysts in a supported system. , 1999, 37, 331.		1
266	Metallocene catalyzed polymerization: industrial technology. Polymer Science and Technology, 1999, , 446-453.	0.1	4
267	Controlling molecular weight distributions of polyethylene by combining soluble metallocene/MAO catalysts. Journal of Polymer Science Part A, 1998, 36, 831-840.	2.5	71
268	Use of hydrogen for the tailoring of the molecular weight distribution of polyethylene in a bimetallic supported metallocene catalyst system. Macromolecular Rapid Communications, 1998, 19, 197-199.	2.0	63
269	Effect of operating conditions on the molecular weight distribution of polyethylene synthesized by soluble metallocene/methylaluminoxane catalysts. Macromolecular Chemistry and Physics, 1998, 199, 955-962.	1.1	72
270	Crystallization analysis fractionation (CRYSTAF) of poly(ethylene-co-1-octene) made with single-site-type catalysts: A mathematical model for the dependence of composition distribution on molecular weight. Macromolecular Chemistry and Physics, 1998, 199, 1917-1926.	1.1	44

#	Article	IF	CITATIONS
271	A critical examination of polyethylene molecular weight distribution control through the combination of soluble metallocene/methylalumoxane catalysts. Polymer International, 1998, 47, 351-360.	1.6	21
272	A Second Look at Modeling the Multiplicity of Active Site Types of Ziegler-Natta Catalysts with Flory's and Stockmayer's Distributions. Polymer-Plastics Technology and Engineering, 1998, 6, 225-241.	0.7	32
273	Effect of operating conditions on the molecular weight distribution of polyethylene synthesized by soluble metallocene/methylaluminoxane catalysts. , 1998, 199, 955.		1
274	A Novel Solution of Saito'S Integral Equation for Random Scission–Application on the Vtsbreakeng of Isotactic Polypropylene. Polymer-Plastics Technology and Engineering, 1997, 5, 25-44.	0.7	2
275	Mathematical Modeling of Multicomponent Chain-Growth Polymerizations in Batch, Semibatch, and Continuous Reactors:A A Review. Industrial & Engineering Chemistry Research, 1997, 36, 966-1015.	1.8	166
276	Analysis and Control of the Molecular Weight and Chemical Composition Distributions of Polyolefins Made with Metallocene and Zieglerâ^'Natta Catalysts. Industrial & Engineering Chemistry Research, 1997, 36, 1144-1150.	1.8	80
277	The chemical composition component of the distribution of chain length and long chain branching for copolymerization of olefins and polyolefin chains containing terminal double-bonds. Macromolecular Theory and Simulations, 1997, 6, 591-596.	0.6	52
278	Metallocene Catalysts in Dispersed Media. , 1997, , 155-176.		0
279	Transport Phenomena in Emulsion Polymerization Reactors. , 1997, , 289-304.		2
280	Polymerization reaction engineering — Metallocene catalysts. Progress in Polymer Science, 1996, 21, 651-706.	11.8	168
281	A new methodology for studying multiple-site-type catalysts for the copolymerization of olefins. Macromolecular Chemistry and Physics, 1996, 197, 3383-3396.	1.1	46
282	Bivariate chain length and long chain branching distribution for copolymerization of olefins and polyolefin chains containing terminal double-bonds. Macromolecular Theory and Simulations, 1996, 5, 547-572.	0.6	119
283	Effect of hydrogen and of catalyst prepolymerization with propylene on the polymerization kinetics of ethylene with a non-supported heterogeneous Ziegler-Natta catalyst. Polymer, 1996, 37, 4599-4605.	1.8	41
284	Analyzing TREF data by stockmayer's bivariate distribution. Macromolecular Theory and Simulations, 1995, 4, 305-324.	0.6	69
285	Effect of reactor residence time distribution on the size distribution of polymer particles made with heterogeneous Ziegler-Natta and supported metallocene catalysts. A generic mathematical model. Macromolecular Theory and Simulations, 1995, 4, 1085-1104.	0.6	34
286	Metallocene/Aluminoxane Catalysts for Olefin Polymerization. A Review. Polymer-Plastics Technology and Engineering, 1995, 3, 131-200.	0.7	80
287	Coordination Polymerization. , 0, , 365-430.		10
288	Molecular Topology Fractionation of Polystyrene Stars and Long Chain Branched Polyethylene Fractions. , 0, , 56-70.		0

#	Article	IF	CITATIONS
289	Using Polymer Reaction Engineering Principles to Help the Environment: The Case of the Canadian Oil Sands Tailings. Journal of the Brazilian Chemical Society, 0, , .	0.6	4
290	On Elegant Solutions in PRE: Moment Equations for the Chain Length Distribution of Coordination Polyolefins. Macromolecular Reaction Engineering, 0, , 2200024.	0.9	4