
Kasparas Rakstys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1445163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 16172-16178.	13.7	321
2	Molecular engineering of face-on oriented dopant-free hole transporting material for perovskite solar cells with 19% PCE. Journal of Materials Chemistry A, 2017, 5, 7811-7815.	10.3	209
3	Efficiency <i>vs.</i> stability: dopant-free hole transporting materials towards stabilized perovskite solar cells. Chemical Science, 2019, 10, 6748-6769.	7.4	191
4	Dopantâ€Free Holeâ€Transporting Materials for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606555.	21.0	171
5	Highly Efficient Perovskite Solar Cells Employing an Easily Attainable Bifluorenylideneâ€Based Holeâ€Transporting Material. Angewandte Chemie - International Edition, 2016, 55, 7464-7468.	13.8	165
6	Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore. Scientific Reports, 2013, 3, 2446.	3.3	143
7	Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nature Communications, 2021, 12, 6394.	12.8	98
8	Carbazole-based enamine: Low-cost and efficient hole transporting material for perovskite solar cells. Nano Energy, 2017, 32, 551-557.	16.0	97
9	Diphenylamine‣ubstituted Carbazoleâ€Based Hole Transporting Materials for Perovskite Solar Cells: Influence of Isomeric Derivatives. Advanced Functional Materials, 2018, 28, 1704351.	14.9	95
10	Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nature Communications, 2021, 12, 52.	12.8	94
11	Donor–π–donor type hole transporting materials: marked π-bridge effects on optoelectronic properties, solid-state structure, and perovskite solar cell efficiency. Chemical Science, 2016, 7, 6068-6075.	7.4	85
12	A highly hindered bithiophene-functionalized dispiro-oxepine derivative as an efficient hole transporting material for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 18259-18264.	10.3	78
13	Towards high-performance DPP-based sensitizers for DSC applications. Chemical Communications, 2012, 48, 10727.	4.1	76
14	A structural study of DPP-based sensitizers for DSC applications. Chemical Communications, 2012, 48, 10724.	4.1	68
15	Pyridination of hole transporting material in perovskite solar cells questions the long-term stability. Journal of Materials Chemistry C, 2018, 6, 8874-8878.	5.5	67
16	Rational design of triazatruxene-based hole conductors for perovskite solar cells. RSC Advances, 2015, 5, 53426-53432.	3.6	64
17	Dopantâ€Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angewandte Chemie - International Edition, 2021, 60, 20489-20497.	13.8	56
18	Perovskite Solar Cells Employing Molecularly Engineered Zn(II) Phthalocyanines as Hole-transporting Materials. Nano Energy, 2016, 30, 853-857.	16.0	52

KASPARAS RAKSTYS

#	Article	IF	CITATIONS
19	Diketopyrrolopyrrole-based sensitizers for dye-sensitized solar cell applications: anchor engineering. Journal of Materials Chemistry A, 2013, 1, 13978.	10.3	45
20	Efficiency enhancement of perovskite solar cells via incorporation of phenylethenyl side arms into indolocarbazole-based hole transporting materials. Nanoscale, 2016, 8, 8530-8535.	5.6	39
21	Highly Efficient Perovskite Solar Cells Employing an Easily Attainable Bifluorenylideneâ€Based Holeâ€Transporting Material. Angewandte Chemie, 2016, 128, 7590-7594.	2.0	37
22	Low ost Perovskite Solar Cells Employing Dimethoxydiphenylamine‧ubstituted Bistricyclic Aromatic Enes as Hole Transport Materials. ChemSusChem, 2017, 10, 3825-3832.	6.8	37
23	D–π–Aâ€Type Triazatruxeneâ€Based Dopantâ€Free Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000173.	5.8	33
24	Weakly Conjugated Hybrid Zinc Porphyrin Sensitizers for Solidâ€6tate Dyeâ€6ensitized Solar Cells. Advanced Functional Materials, 2016, 26, 5550-5559.	14.9	31
25	Carbazole-Terminated Isomeric Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 19710-19717.	8.0	28
26	Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 301-309.	10.3	25
27	Isomeric Carbazole-Based Hole-Transporting Materials: Role of the Linkage Position on the Photovoltaic Performance of Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 3286-3296.	6.7	25
28	Greenâ€Chemistryâ€Inspired Synthesis of Cyclobutaneâ€Based Holeâ€5elective Materials for Highly Efficient Perovskite Solar Cells and Modules. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
29	Solution processed organic light-emitting diodes using a triazatruxene crosslinkable hole transporting material. RSC Advances, 2018, 8, 35719-35723.	3.6	19
30	Stable Perovskite Solar Cells Using Molecularly Engineered Functionalized Oligothiophenes as Lowâ€Cost Holeâ€Transporting Materials. Small, 2021, 17, e2100783.	10.0	19
31	A structural study of 1-phenyl-1,2,3,4-tetrahydroquinoline-based dyes for solid-state DSSC applications. Dyes and Pigments, 2014, 104, 211-219.	3.7	18
32	Perovskite Solar Cells: 18% Efficiency Using Zn(II) and Cu(II) Octakis(diarylamine)phthalocyanines as Hole-Transporting Materials. ACS Applied Energy Materials, 2019, 2, 6195-6199.	5.1	12
33	Precursor Route Poly(1,4-phenylenevinylene)-Based Interlayers for Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 889-899.	5.1	11
34	Branched Methoxydiphenylamine-Substituted Carbazole Derivatives for Efficient Perovskite Solar Cells: Bigger Is Not Always Better. Chemistry of Materials, 2021, 33, 7017-7027.	6.7	11
35	Highly Planar Benzodipyrroleâ€Based Hole Transporting Materials with Passivation Effect for Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100667.	5.8	11
36	Triarylamine-Functionalized Imidazolyl-Capped Bithiophene Hole Transporting Material for Cost-Effective Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 22053-22060.	8.0	8

KASPARAS RAKSTYS

#	Article	IF	CITATIONS
37	Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067.	6.7	7
38	Dopantâ€Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angewandte Chemie, 2021, 133, 20652-20660.	2.0	6
39	Greenâ€Chemistryâ€Inspired Synthesis of Cyclobutaneâ€Based Holeâ€Selective Materials for Highly Efficient Perovskite Solar Cells and Modules. Angewandte Chemie, 2022, 134, .	2.0	4
40	Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells. , 0, , .		0
41	Interfacial material engineering for the perovskite solar cell stability improvement. , 0, , .		Ο