Itthipon Jeerapan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1445004/publications.pdf

Version: 2024-02-01

41 papers

3,656 citations

257450 24 h-index 377865 34 g-index

41 all docs

41 docs citations

41 times ranked

4396 citing authors

#	Article	IF	Citations
1	Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices. Progress in Molecular Biology and Translational Science, 2022, 187, 249-279.	1.7	6
2	CoNi Layered Double Hydroxide Nanosheets Vertically Grown on Electrodeposited Dendritic Copper Substrates for Supercapacitor Applications. ACS Applied Nano Materials, 2022, 5, 2395-2404.	5.0	16
3	New Insights on Molecular Communication in Nano Communication Networks and their Applications. ECS Transactions, 2022, 107, 9295-9312.	0.5	O
4	A Dosing-Spoon-Based Electrochemical Sensor for Fast Assessment of Andrographis paniculata Extracts. Journal of the Electrochemical Society, 2022, 169, 057521.	2.9	0
5	Reviewâ€"Lab-in-a-Mouth and Advanced Point-of-Care Sensing Systems: Detecting Bioinformation from the Oral Cavity and Saliva. , 2022, 1, 021603.		50
6	Advances in emergent biological recognition elements and bioelectronics for diagnosing COVID-19. Emergent Materials, 2021, 4, 231-247.	5.7	8
7	Wearable Biosupercapacitor: Harvesting and Storing Energy from Sweat. Advanced Functional Materials, 2021, 31, 2102915.	14.9	47
8	Environmental-friendly pretreatment and process optimization of macroalgal biomass for effective ethanol production as an alternative fuel using Saccharomyces cerevisiae. Biocatalysis and Agricultural Biotechnology, 2021, 31, 101919.	3.1	11
9	Recent progress in intrinsic and stimulated room-temperature gas sensors enabled by low-dimensional materials. Journal of Materials Chemistry C, 2021, 9, 3026-3051.	5 . 5	48
10	Cavitas electrochemical sensors for the direct determination of salivary thiocyanate levels. Mikrochimica Acta, 2021, 188, 415.	5.0	5
11	In Silico Analysis of Glucose Oxidase from Aspergillus niger: Potential Cysteine Mutation Sites for Enhancing Protein Stability. Bioengineering, 2021, 8, 188.	3.5	3
12	Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Analytical Chemistry, 2020, 92, 378-396.	6.5	136
13	Onâ∈Body Bioelectronics: Wearable Biofuel Cells for Bioenergy Harvesting and Selfâ∈Powered Biosensing. Advanced Functional Materials, 2020, 30, 1906243.	14.9	134
14	Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. Chemosensors, 2020, 8, 71.	3.6	19
15	Liquid Metal Based Islandâ€Bridge Architectures for All Printed Stretchable Electrochemical Devices. Advanced Functional Materials, 2020, 30, 2002041.	14.9	95
16	Reviewâ€"Flexible and Stretchable Electrochemical Sensing Systems: Materials, Energy Sources, and Integrations. Journal of the Electrochemical Society, 2020, 167, 037573.	2.9	74
17	Label-free potentiometric aptasensing platform for the detection of Pb2+ based on guanine quadruplex structure. Analytica Chimica Acta, 2019, 1078, 53-59.	5.4	25
18	Stretchable and Flexible Buckypaperâ€Based Lactate Biofuel Cell for Wearable Electronics. Advanced Functional Materials, 2019, 29, 1905785.	14.9	132

#	Article	IF	Citations
19	Challenges and Opportunities of Carbon Nanomaterials for Biofuel Cells and Supercapacitors: Personalized Energy for Futuristic Self-Sustainable Devices. Journal of Carbon Research, 2019, 5, 62.	2.7	19
20	Wearable, stable, highly sensitive hydrogel–graphene strain sensors. Beilstein Journal of Nanotechnology, 2019, 10, 475-480.	2.8	38
21	Rotibot: Use of Rotifers as Selfâ€Propelling Biohybrid Microcleaners. Advanced Functional Materials, 2019, 29, 1900658.	14.9	37
22	(Invited) Self-Powered Sensors Employing Biofuel Cells: Wearable and Ingestible Bioelectronics. ECS Meeting Abstracts, 2019, , .	0.0	0
23	(Invited) Enzymatic Biofuel Cells Toward the Development of Wearable and Edible Bioelectronic Technologies. ECS Meeting Abstracts, 2019, , .	0.0	0
24	Multistimuli-Responsive Camouflage Swimmers. Chemistry of Materials, 2018, 30, 1593-1601.	6.7	31
25	A 0.3V biofuel-cell-powered glucose/lactate biosensing system employing a 180nW 64dB SNR passive Î'Ï, ADC and a 920MHz wireless transmitter. , 2018, , .		7
26	Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy and Environmental Science, 2018, 11, 3431-3442.	30.8	196
27	Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices. Accounts of Chemical Research, 2018, 51, 2820-2828.	15.6	214
28	A 0.3-V CMOS Biofuel-Cell-Powered Wireless Glucose/Lactate Biosensing System. IEEE Journal of Solid-State Circuits, 2018, 53, 3126-3139.	5.4	55
29	Noninvasive Transdermal Delivery System of Lidocaine Using an Acoustic Dropletâ€Vaporization Based Wearable Patch. Small, 2018, 14, e1803266.	10.0	47
30	Enzymatic glucose/oxygen biofuel cells: Use of oxygen-rich cathodes for operation under severe oxygen-deficit conditions. Biosensors and Bioelectronics, 2018, 122, 284-289.	10.1	30
31	Fully edible biofuel cells. Journal of Materials Chemistry B, 2018, 6, 3571-3578.	5.8	23
32	A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosensors and Bioelectronics, 2017, 91, 885-891.	10.1	274
33	Edible Electrochemistry: Food Materials Based Electrochemical Sensors. Advanced Healthcare Materials, 2017, 6, 1700770.	7.6	40
34	Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sensors, 2016, 1, 464-482.	7.8	596
35	Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sensors, 2016, 1, 1011-1019.	7.8	460
36	Stretchable biofuel cells as wearable textile-based self-powered sensors. Journal of Materials Chemistry A, 2016, 4, 18342-18353.	10.3	258

#	Article	IF	CITATIONS
37	A Textileâ€Based Stretchable Multi″on Potentiometric Sensor. Advanced Healthcare Materials, 2016, 5, 996-1001.	7.6	196
38	Water-processable polypyrrole microparticle modules for direct fabrication of hierarchical structured electrochemical interfaces. Electrochimica Acta, 2016, 190, 495-503.	5.2	21
39	Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability. Nano Letters, 2016, 16, 721-727.	9.1	276
40	Pure Nanoscale Morphology Effect Enhancing the Energy Storage Characteristics of Processable Hierarchical Polypyrrole. Langmuir, 2015, 31, 11904-11913.	3.5	24
41	Wearable Skin-Worn Enzyme-Based Electrochemical Devices: Biosensing, Energy Harvesting, and Self-Powered Sensing., 0, , .		5