Zhen-Yuan Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1444945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural properties of polysaccharides from cultivated fruit bodies and mycelium of Cordyceps militaris. Carbohydrate Polymers, 2016, 142, 63-72.	10.2	137
2	Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia. Carbohydrate Polymers, 2016, 140, 461-471.	10.2	127
3	Structural analysis and anti-tumor activity comparison of polysaccharides from Astragalus. Carbohydrate Polymers, 2011, 85, 895-902.	10.2	107
4	Structural characterization and inhibition on α-glucosidase activity of acidic polysaccharide from Annona squamosa. Carbohydrate Polymers, 2017, 174, 1-12.	10.2	106
5	Synthesis, characterization and antioxidant activity of selenium polysaccharide from Cordyceps militaris. International Journal of Biological Macromolecules, 2016, 93, 1090-1099.	7.5	83
6	The preparation of three selenium-containing Cordyceps militaris polysaccharides: Characterization and anti-tumor activities. International Journal of Biological Macromolecules, 2017, 99, 196-204.	7.5	79
7	The chemical structure and anti-aging bioactivity of an acid polysaccharide obtained from <i>rose</i> buds. Food and Function, 2018, 9, 2300-2312.	4.6	72
8	Structural characterization and inhibition on α- d -glucosidase activity of non-starch polysaccharides from Fagopyrum tartaricum. Carbohydrate Polymers, 2016, 153, 679-685.	10.2	67
9	Effect of ultrasonic treatment on structure and antitumor activity of mycelial polysaccharides from Cordyceps gunnii. Carbohydrate Polymers, 2014, 114, 12-20.	10.2	59
10	Degradation of cell wall polysaccharides and change of related enzyme activities with fruit softening in Annona squamosa during storage. Postharvest Biology and Technology, 2020, 166, 111203.	6.0	57
11	Structure and anti-tumor activity of a high-molecular-weight polysaccharide from cultured mycelium of Cordyceps gunnii. Carbohydrate Polymers, 2012, 88, 1072-1076.	10.2	56
12	Structural characterization and antitumor activity of a novel Se-polysaccharide from selenium-enriched <i>Cordyceps gunnii</i> . Food and Function, 2018, 9, 2744-2754.	4.6	53
13	Chemical structure and inhibition on α-glucosidase of polysaccharide with alkaline-extracted from glycyrrhiza inflata residue. International Journal of Biological Macromolecules, 2020, 147, 1125-1135.	7.5	49
14	Chemical structure and inhibition on α-glucosidase of the polysaccharides from Cordyceps militaris with different developmental stages. International Journal of Biological Macromolecules, 2020, 148, 722-736.	7.5	45
15	Sulfated modification of the polysaccharide from Cordyceps_gunnii mycelia and its biological activities. Carbohydrate Polymers, 2013, 92, 872-876.	10.2	43
16	Anti-tumor effect of polysaccharide from Hirsutella sinensis on human non-small cell lung cancer and nude mice through intrinsic mitochondrial pathway. International Journal of Biological Macromolecules, 2017, 99, 258-264.	7.5	43
17	Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from Wheat Bran. Journal of Molecular Structure, 2021, 1233, 130096.	3.6	43
18	Comparisons of the anti-tumor activity of polysaccharides from fermented mycelia and cultivated fruiting bodies of Cordyceps militaris in vitro. International Journal of Biological Macromolecules, 2019, 130, 307-314.	7.5	41

#	Article	IF	CITATIONS
19	Chemical structure and effects of antioxidation and against α-glucosidase of natural polysaccharide from Glycyrrhiza inflata Batalin. International Journal of Biological Macromolecules, 2020, 155, 560-571.	7.5	41
20	Structure analysis and antioxidant activity of polysaccharide-iron (III) from Cordyceps militaris mycelia. International Journal of Biological Macromolecules, 2021, 178, 170-179.	7.5	41
21	Influence of fermentation conditions on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Cordyceps militaris. Applied Microbiology and Biotechnology, 2016, 100, 3909-3921.	3.6	39
22	Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis. Nature Structural and Molecular Biology, 2016, 23, 441-449.	8.2	38
23	Chemical structure and antioxidant activity of a polysaccharide from Siraitia grosvenorii. International Journal of Biological Macromolecules, 2020, 165, 1900-1910.	7.5	36
24	Synthesis and antitumor activity evaluation of chrysin derivatives. European Journal of Medicinal Chemistry, 2014, 75, 297-300.	5.5	32
25	Preparation and inhibition on α- d -glucosidase of low molecular weight polysaccharide from Cordyceps militaris. International Journal of Biological Macromolecules, 2016, 93, 27-33.	7.5	32
26	Structural characterization and inhibition on α-glucosidase of the polysaccharides from fruiting bodies and mycelia of Pleurotus eryngii. International Journal of Biological Macromolecules, 2020, 156, 1512-1519.	7.5	32
27	Comparative evaluation of polysaccharides isolated from Astragalus, oyster mushroom, and yacon as inhibitors of α-glucosidase. Chinese Journal of Natural Medicines, 2014, 12, 290-293.	1.3	30
28	Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus. International Journal of Biological Macromolecules, 2016, 87, 570-576.	7.5	30
29	Structural characterization and anti-tumor activity of polysaccharide produced by Hirsutella sinensis. International Journal of Biological Macromolecules, 2016, 82, 959-966.	7.5	30
30	Using <i>Cordyceps militaris</i> extracellular polysaccharides to prevent Pb ²⁺ -induced liver and kidney toxicity by activating Nrf2 signals and modulating gut microbiota. Food and Function, 2020, 11, 9226-9239.	4.6	29
31	Structure and hypoglycemic activity of a novel exopolysaccharide of Cordyceps militaris. International Journal of Biological Macromolecules, 2021, 166, 496-508.	7.5	29
32	Structural characterization and inhibitions on α-glucosidase and α-amylase of alkali-extracted water-soluble polysaccharide from Annona squamosa residue. International Journal of Biological Macromolecules, 2021, 166, 730-740.	7.5	28
33	Immunostimulatory activity of glycopeptides from Paecilomyces sinensis under normal and cyclophosphamide induced immunosuppressive conditions in mice models. Food and Function, 2016, 7, 3566-3576.	4.6	27
34	Carboxymethylation and acetylation of the polysaccharide from <i>Cordyceps militaris</i> and their α-glucosidase inhibitory activities. Natural Product Research, 2020, 34, 369-377.	1.8	27
35	A novel acid polysaccharide from fermented broth of Pleurotus citrinopileatus: Hypoglycemic activity inÂvitro and chemical structure. Journal of Molecular Structure, 2020, 1220, 128717.	3.6	27
36	A novel polysaccharide from Pleurotus citrinopileatus mycelia: Structural characterization, hypoglycemic activity and mechanism. Food Bioscience, 2020, 37, 100735.	4.4	26

#	Article	IF	CITATIONS
37	Structural characterisation and ACE-inhibitory activities of polysaccharide from <i>Gastrodia elata</i> Blume. Natural Product Research, 2019, 33, 1721-1726.	1.8	25
38	Immunomodulatory effect of polysaccharides from submerged cultured <i>Cordyceps gunnii</i> . Pharmaceutical Biology, 2012, 50, 1103-1110.	2.9	23
39	Hypoglycemic effect of glycyrrhizic acid, a natural non-carbohydrate sweetener, on streptozotocin-induced diabetic mice. Food and Function, 2020, 11, 4160-4170.	4.6	23
40	Selenium modification of β-lactoglobulin (β-Lg) and its biological activity. Food Chemistry, 2016, 204, 246-251.	8.2	22
41	Effect of steam explosion pretreatment on the structure and bioactivity of Ampelopsis grossedentata polysaccharides. International Journal of Biological Macromolecules, 2021, 185, 194-205.	7.5	21
42	Structure analysis and anti-fatigue activity of a polysaccharide from <i>Lepidium meyenii</i> Walp. Natural Product Research, 2019, 33, 2480-2489.	1.8	20
43	Chemical constituents with antioxidant activity from the pericarps of Juglans sigillata. Chemistry of Natural Compounds, 2011, 47, 442-445.	0.8	16
44	Preliminary characterization and immunostimulatory activity of a novel functional polysaccharide from Astragalus residue fermented by Paecilomyces sinensis. RSC Advances, 2017, 7, 23875-23881.	3.6	16
45	Effects of cultural medium on the formation and antitumor activity of polysaccharides by Cordyceps gunnii. Journal of Bioscience and Bioengineering, 2016, 122, 494-498.	2.2	14
46	Efficient synthesis and activity of beneficial intestinal flora of two lactulose-derived oligosaccharides. European Journal of Medicinal Chemistry, 2016, 114, 8-13.	5.5	14
47	Structural analysis and immunostimulatory activity of glycopeptides from Paecilomyces sinensis. Food and Function, 2016, 7, 1593-1600.	4.6	14
48	THE PURIFICATION AND ANTIOXIDATIVE ACTIVITIES IN D-GALACTOSE-INDUCED AGING MICE OF A WATER-SOLUBLE POLYSACCHARIDE FROM CORDYCEPS GUNNII (BERK.) BERK. MYCELIUM. Journal of Food Biochemistry, 2011, 35, 303-322.	2.9	13
49	The effect of fermentation conditions on the structure and anti-tumor activity of polysaccharides from <i>Cordyceps gunnii</i> . RSC Advances, 2019, 9, 18205-18216.	3.6	13
50	Function and mechanism of polysaccharide on enhancing tolerance of Trichoderma asperellum under Pb2+ stress. International Journal of Biological Macromolecules, 2020, 151, 509-518.	7.5	13
51	Structural characterization and protective effect on PC12 cells against H2O2-induced oxidative damage of a polysaccharide extracted from mycelia of Lactarius deliciosus Gray. International Journal of Biological Macromolecules, 2022, 209, 1815-1825.	7.5	13
52	Apigenin derivatives from <i>Paulownia tomentosa</i> Steud. var. <i>tomentosa</i> stem barks. Holzforschung, 2009, 63, 440-442.	1.9	12
53	Preparation, characterization and bioactivity of xylobiose and xylotriose from corncob xylan by xylanase. European Food Research and Technology, 2015, 241, 27-35.	3.3	12
54	Characterization and lymphocyte proliferation activity of an oligosaccharide degraded from Astragalus polysaccharide. MedChemComm, 2017, 8, 1521-1530.	3.4	12

#	Article	IF	CITATIONS
55	¹ H NMR-based metabonomics of the hypoglycemic effect of polysaccharides from <i>Cordyceps militaris</i> on streptozotocin-induced diabetes in mice. Natural Product Research, 2020, 34, 1366-1372.	1.8	12
56	Chemical structure and inhibition on α-glucosidase of a novel polysaccharide from Hypsizygus marmoreus. Journal of Molecular Structure, 2020, 1211, 128110.	3.6	12
57	Structural analysis and antioxidant activity of the glycoside from Imperial Chrysanthemum. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1581-1590.	2.2	11
58	Effects of Na2SeO3 on growth, metabolism, antioxidase and enzymes involved in polysaccharide synthesis of Cordyceps militaris. Process Biochemistry, 2020, 97, 64-71.	3.7	11
59	Synthesis of ProtectedN-Acetylchitooligosaccharide and Its Analogues: A Versatile Approach for the Synthesis of Complex Oligosaccharides of 2-Amino-2-deoxy Sugar. Chinese Journal of Chemistry, 2008, 26, 1519-1522.	4.9	10
60	The chromatographic analysis of oligosaccharides and preparation of 1-kestose and nystose in yacon. International Journal of Food Sciences and Nutrition, 2012, 63, 338-342.	2.8	10
61	Highly efficient synthesis and antitumor activity of monosaccharide saponins mimicking components of Chinese folk medicine <i>Cordyceps sinensis</i> . Journal of Asian Natural Products Research, 2012, 14, 429-435.	1.4	10
62	Structural characterization and inhibition on α-glucosidase of a novel oligosaccharide from barley malt. Journal of Cereal Science, 2018, 82, 82-93.	3.7	10
63	Structural characterization and prebiotic potential of an acidic polysaccharide from <i>Imperial Chrysanthemum</i> . Natural Product Research, 2022, 36, 586-594.	1.8	9
64	Preparation, structure and α-glucosidase inhibitory of oligosaccharides by enzymatic hydrolysis from Annona squamosa polysaccharide. Industrial Crops and Products, 2022, 177, 114468.	5.2	9
65	Structural properties and antioxidant activities of polysaccharide from fruit bodies of Pholiota nameko. Natural Product Research, 2019, 33, 1563-1569.	1.8	8
66	Structure, antioxidant property and protection on PC12 of a polysaccharide isolated and screened from <i>Abelmoschus esculentus</i> L.Moench (okra). Natural Product Research, 2022, 36, 1441-1447.	1.8	8
67	Preparation and antibacterial effect of chitooligosaccharides monomers with different polymerization degrees from crab shell chitosan by enzymatic hydrolysis. Biotechnology and Applied Biochemistry, 2023, 70, 164-174.	3.1	8
68	Regio―and Stereoâ€selective Synthesis of Peracetylated Carbohydrate Esters of Aromatic Fatty Acid Using <i>p</i> â€Toluenesulfonic Acid as Catalyst. Chinese Journal of Chemistry, 2010, 28, 2245-2248.	4.9	7
69	Chemical structure and mechanism of polysaccharide on Pb2+ tolerance of Cordyceps militaris after Pb2+ domestication. International Journal of Biological Macromolecules, 2020, 165, 958-969.	7.5	7
70	Chromatographic analysis and preparation of l-arabinose from corncob by acid hydrolysis. Industrial Crops and Products, 2017, 95, 163-169.	5.2	6
71	Tolerance mechanism of <i>Trichoderma asperellum</i> to Pb ²⁺ : response changes of related active ingredients under Pb ²⁺ stress. RSC Advances, 2020, 10, 5202-5211.	3.6	6
72	Comparison of structural and antioxidant activity of polysaccharide extracted from truffles. Journal of Food Science, 2022, 87, 2999-3012.	3.1	6

#	Article	lF	CITATIONS
73	Taxonomy characterization and plumbum bioremediation of novel fungi. Journal of Basic Microbiology, 2018, 58, 368-376.	3.3	5
74	Chemical analysis of a polysaccharide from <i>Cristaria plicata</i> (Leach). International Journal of Food Sciences and Nutrition, 2012, 63, 506-511.	2.8	4
75	Preparation and activity evaluation of chrysin-β-d-galactopyranoside. Archives of Pharmacal Research, 2016, 39, 1433-1440.	6.3	4
76	Enzymatic characterization and validation of gene expression of phosphoglucomutase from Cordyceps militaris. Biotechnology Letters, 2021, 43, 177-192.	2.2	3
77	Synthesis and inhibition of α-glucosidase of methyl glycyrrhetinate glycosides. Natural Product Research, 2021, 35, 1874-1880.	1.8	3
78	Effects of postharvest treatment with pullulan, calcium chloride, and chitosan on quality and sugar metabolism of <i>Annona squamosa</i> during storage. Journal of Food Processing and Preservation, 2022, 46, .	2.0	3
79	Comparison of response mechanism of ordinary Cordyceps militaris and domesticated Cordyceps militaris to Pb2+ stress. Process Biochemistry, 2021, 107, 112-120.	3.7	2
80	Synthesis and Antitumor Activity of a New Ergosterol Derivative. Chemistry of Natural Compounds, 2016, 52, 252-255.	0.8	1
81	Changes in nutrition and related enzymes of Annona squamosa during storage based on carbohydrate analysis. Journal of Food Processing and Preservation, 2019, 43, e13997.	2.0	1
82	Dihydromyricetin from Ampelopsis grossedentata and its derivatives: Structural characterization and anti-hepatocellular carcinoma activity. Journal of Molecular Structure, 2022, 1258, 132677.	3.6	1
83	Structure analysis and Pb2+-resistant activity of novel oligosaccharide from Trichoderma asperellum. Journal of Molecular Structure, 2022, 1261, 132893.	3.6	0