Mingming Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1444787/publications.pdf

Version: 2024-02-01

471509 501196 67 920 17 28 h-index g-index citations papers 67 67 67 742 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Performance-Based Iterative Learning Control for Task-Oriented Rehabilitation: A Pilot Study in Robot-Assisted Bilateral Training. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 2031-2040.	3.8	11
2	Short-Interval Priming Effects: An EEG Study of Action Observation on Motor Imagery. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 1765-1772.	3.8	1
3	Bilateral Asymmetry of Hand Force Production in Dynamic Physically-Coupled Tasks. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1826-1834.	6.3	5
4	Linear Active Disturbance Rejection Control for Two-Mass Systems Via Singular Perturbation Approach. IEEE Transactions on Industrial Informatics, 2022, 18, 3022-3032.	11.3	18
5	Toward Gait Symmetry Enhancement via a Cable-Driven Exoskeleton Powered by Series Elastic Actuators. IEEE Robotics and Automation Letters, 2022, 7, 786-793.	5.1	35
6	Characterization of Bimanual Cyclical Tasks From Single-Trial EEG-fNIRS Measurements. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 146-156.	4.9	8
7	A Robotic System to Deliver Multiple Physically Bimanual Tasks via Varying Force Fields. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 688-698.	4.9	6
8	A Muscle Synergy-Driven ANFIS Approach to Predict Continuous Knee Joint Movement. IEEE Transactions on Fuzzy Systems, 2022, 30, 1553-1563.	9.8	12
9	Linear active disturbance rejection control of servo systems via IMC principle with active damping and sliding mode techniques. ISA Transactions, 2022, 129, 663-672.	5.7	3
10	Nonlinear Analysis of Electroencephalogram Variability as a Measure of the Depth of Anesthesia. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-13.	4.7	3
11	Symmetric Convolutional and Adversarial Neural Network Enables Improved Mental Stress Classification From EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1384-1400.	4.9	8
12	Linear Active Disturbance Rejection Control for Servo Motor Systems With Input Delay via Internal Model Control Rules. IEEE Transactions on Industrial Electronics, 2021, 68, 1077-1086.	7.9	40
13	Waveform optimization of a two-axis smooth impact drive mechanism actuator. Journal of Intelligent Material Systems and Structures, 2021, 32, 156-168.	2.5	1
14	Guest Editorial Special Issue on Artificial Intelligence in Automation for Healthcare Applications. IEEE Transactions on Automation Science and Engineering, 2021, 18, 401-404.	5.2	1
15	Characterizing the Area of Significant Brain Activation Region to Spectrally-degraded Music: A Functional Near-Infrared Spectroscopy Study. , 2021, , .		O
16	Robot-Assisted Haptic Rendering of Bilateral Physical Tasks via Physical Engine. , 2021, , .		1
17	Predictive Active Disturbance Rejection Control for Servo Systems With Communication Delays Via Sliding Mode Approach. IEEE Transactions on Industrial Electronics, 2021, 68, 12679-12688.	7.9	7
18	SSVEP-Based Brain-Computer Interface With a Limited Number of Frequencies Based on Dual-Frequency Biased Coding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 760-769.	4.9	18

#	Article	IF	CITATIONS
19	Electroencephalogram variability analysis for monitoring depth of anesthesia. Journal of Neural Engineering, 2021, 18, .	3.5	5
20	Two-Stage Optimization of a Reconfigurable Asymmetric 6-DOF Haptic Robot for Task-Specific Workspace [*] ., 2021,,.		1
21	A Walking Assistance Exoskeleton with Individual Control of Multiple Cables via a Single Actuator: Design and Evaluation. , 2021, , .		2
22	Improving Human-Robot Interaction Safety through Compliant Motion Constraints in Bilateral Upper Limb Rehabilitation. , 2021, , .		0
23	A robot-assisted bilateral upper limb training strategy with subject-specific workspace: A pilot study. Robotics and Autonomous Systems, 2020, 124, 103334.	5.1	14
24	Fuzzy logic compliance adaptation for an assist-as-needed controller on the Gait Rehabilitation Exoskeleton (GAREX). Robotics and Autonomous Systems, 2020, 133, 103642.	5.1	13
25	Exploiting ultralow-frequency energy via vibration-to-rotation conversion of a rope-spun rotor. Energy Conversion and Management, 2020, 225, 113433.	9.2	22
26	A linear actuator with an SMA clamping mechanism for dual-slider positioning. Microsystem Technologies, 2020, 26, 3885-3891.	2.0	5
27	Synchronous Position and Compliance Regulation on a Bi-Joint Gait Exoskeleton Driven by Pneumatic Muscles. IEEE Transactions on Automation Science and Engineering, 2020, 17, 2162-2166.	5.2	21
28	A Flexible and Stretchable Bending Sensor Based on Hydrazine-Reduced Porous Graphene for Human Motion Monitoring. IEEE Sensors Journal, 2020, 20, 12661-12670.	4.7	19
29	Subject-specific compliance control of an upper-limb bilateral robotic system. Robotics and Autonomous Systems, 2020, 126, 103478.	5.1	10
30	Pneumatic Resistance Control of an Upper Limb Active Rehabilitation System. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2020, 3, .	0.5	0
31	Robust Internal Model Control for Motor Systems Based on Sliding Mode Technique and Extended State Observer. , 2020, , .		0
32	Adaptive Trajectory Tracking Control of a Parallel Ankle Rehabilitation Robot With Joint-Space Force Distribution. IEEE Access, 2019, 7, 85812-85820.	4.2	45
33	A New Trajectory Determination Method for Robot-Assisted Ankle Ligament Rehabilitation. , 2019, 2019, 5390-5393.		1
34	Automated robot-assisted assessment for wrist active ranges of motion. Medical Engineering and Physics, 2019, 71, 98-101.	1.7	4
35	Bringing Psychological Strategies to Robot-Assisted Physiotherapy for Enhanced Treatment Efficacy. Frontiers in Neuroscience, 2019, 13, 984.	2.8	13
36	Interactive Compliance Control of a Wrist Rehabilitation Device (WR <i>e</i> D) with Enhanced Training Safety. Journal of Healthcare Engineering, 2019, 2019, 1-10.	1.9	11

3

#	Article	IF	Citations
37	Design and characterization of a T-shaped two-axis force sensor. Sensor Review, 2019, 39, 776-782.	1.8	О
38	Modeling and Experimental Verification of a Dual-slider Piezo-actuated Linear Motor. Instruments and Experimental Techniques, 2019, 62, 876-880.	0.5	2
39	A three-stage trajectory generation method for robot-assisted bilateral upper limb training with subject-specific adaptation. Robotics and Autonomous Systems, 2018, 105, 38-46.	5.1	24
40	Automated objective robot-assisted assessment of wrist passive ranges of motion. Journal of Biomechanics, 2018, 73, 223-226.	2.1	9
41	A Preliminary Study on Robot-Assisted Ankle Rehabilitation for the Treatment of Drop Foot. Journal of Intelligent and Robotic Systems: Theory and Applications, 2018, 91, 207-215.	3.4	18
42	Adaptive Patient-Cooperative Control of a Compliant Ankle Rehabilitation Robot (CARR) With Enhanced Training Safety. IEEE Transactions on Industrial Electronics, 2018, 65, 1398-1407.	7.9	83
43	Reviewing high-level control techniques on robot-assisted upper-limb rehabilitation. Advanced Robotics, 2018, 32, 1253-1268.	1.8	39
44	A Feasibility Study of Robot-Assisted Ankle Training Triggered by Combination of SSVEP Recognition and Motion Characteristics. , 2018, , .		0
45	Development of a Reconfigurable Wrist Rehabilitation Device with an Adaptive Forearm Holder. , 2018, , .		7
46	Development of a Pneumatic Robotic System for Bilateral Upper Limb Interactive Training with Variable Resistance. , 2018 , , .		3
47	Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects. Journal of Healthcare Engineering, 2018, 2018, 1-9.	1.9	27
48	Reviewing Clinical Effectiveness of Active Training Strategies of Platform-Based Ankle Rehabilitation Robots. Journal of Healthcare Engineering, 2018, 2018, 1-12.	1.9	24
49	Reconfigurable workspace and torque capacity of a compliant ankle rehabilitation robot (CARR). Robotics and Autonomous Systems, 2017, 98, 213-221.	5.1	50
50	Compliance adaptation of an intrinsically soft ankle rehabilitation robot driven by pneumatic muscles. , 2017, , .		10
51	A Feasibility Study of SSVEP-Based Passive Training on an Ankle Rehabilitation Robot. Journal of Healthcare Engineering, 2017, 2017, 1-9.	1.9	13
52	Design and Interaction Control of a New Bilateral Upper-Limb Rehabilitation Device. Journal of Healthcare Engineering, 2017, 2017, 1-9.	1.9	11
53	Robot-assisted ankle rehabilitation for the treatment of drop foot: A case study., 2016,,.		12
54	A real-time computational model for estimating kinematics of ankle ligaments. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 835-844.	1.6	5

#	Article	IF	CITATIONS
55	A robot-driven computational model for estimating passive ankle torque with subject-specific adaptation. IEEE Transactions on Biomedical Engineering, 2015, 63, 1-1.	4.2	20
56	Model based open-loop posture control of a parallel ankle assessment and rehabilitation robot. , 2015, , .		2
57	Robot-Assisted Ankle Rehabilitation Training on an Adult With Cerebral Palsy: A Case Report. , 2015, , .		1
58	A novel assessment technique for measuring ankle orientation and stiffness. Journal of Biomechanics, 2015, 48, 3527-3529.	2.1	4
59	Article Commentary: An Assistance-as-Needed Control Paradigm for Robot-Assisted Ankle Rehabilitation. Rehabilitation Process and Outcome, 2014, 3, RPO.S12340.	1.6	1
60	Reviewing effectiveness of ankle assessment techniques for use in robot-assisted therapy. Journal of Rehabilitation Research and Development, 2014, 51, 517-534.	1.6	18
61	An in-vivo lateral ankle ligament strain behavior assessment technique for potential use in robot-assisted therapy., 2014, 2014, 4022-5.		0
62	A virtual-reality tracking game for use in robot-assisted ankle rehabilitation. , 2014, , .		8
63	A New Dynamic Modelling Algorithm for Pneumatic Muscle Actuators. Lecture Notes in Computer Science, 2014, , 432-440.	1.3	6
64	Effectiveness of robot-assisted therapy on ankle rehabilitation $\hat{a} \in \hat{a}$ a systematic review. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 30.	4.6	156
65	Motion Model of Helical Springs under Vibrational Condition. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2012, 48, 78.	0.5	3
66	Development of Impacting Fatigue Test Device of Stranded Wires Helical Springs., 2011,, 239-242.		0
67	Experimental Research of Dynamic Parameters of Stranded-Wire Helical Springs under Impact Load. , 2011, , 113-118.		O