Yun Qiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1444772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sodium storage in Na-rich Na x FeFe(CN) 6 nanocubes. Nano Energy, 2015, 12, 386-393.	16.0	253
2	High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy, 2014, 5, 97-104.	16.0	138
3	3Dâ€Printed Graphene Oxide Framework with Thermal Shock Synthesized Nanoparticles for Liâ€CO ₂ Batteries. Advanced Functional Materials, 2018, 28, 1805899.	14.9	135
4	Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 24026.	6.7	134
5	Transient, <i>in situ</i> synthesis of ultrafine ruthenium nanoparticles for a high-rate Li–CO ₂ battery. Energy and Environmental Science, 2019, 12, 1100-1107.	30.8	129
6	First-principles and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 15565-15574.	10.3	128
7	Conformal N-doped carbon on nanoporous TiO2 spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10375.	10.3	113
8	Sodium storage mechanism of N, S co-doped nanoporous carbon: Experimental design and theoretical evaluation. Energy Storage Materials, 2018, 11, 274-281.	18.0	112
9	3D printed separator for the thermal management of high-performance Li metal anodes. Energy Storage Materials, 2018, 12, 197-203.	18.0	95
10	Nanostructured potassium and sodium ion incorporated Prussian blue frameworks as cathode materials for sodium-ion batteries. Chemical Communications, 2017, 53, 5569-5572.	4.1	91
11	Hollow K _{0.27} MnO ₂ Nanospheres as Cathode for High-Performance Aqueous Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 14564-14571.	8.0	81
12	Synergistic effect of bifunctional catalytic sites and defect engineering for high-performance Li–CO2 batteries. Energy Storage Materials, 2020, 27, 133-139.	18.0	77
13	Nanostructured alkali cation incorporated δ-MnO ₂ cathode materials for aqueous sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 7780-7785.	10.3	70
14	Role of Acid in Tailoring Prussian Blue as Cathode for Highâ€Performance Sodiumâ€Ion Battery. Chemistry - A European Journal, 2017, 23, 15991-15996.	3.3	64
15	3D well-ordered porous phosphorus doped carbon as an anode for sodium storage: structure design, experimental and computational insights. Journal of Materials Chemistry A, 2019, 7, 11400-11407.	10.3	64
16	In situ synthesis of flexible elastic N-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 8636-8644.	10.3	62
17	A Heterostructure Coupling of Bioinspired, Adhesive Polydopamine, and Porous Prussian Blue Nanocubics as Cathode for Highâ€Performance Sodiumâ€ion Battery. Small, 2020, 16, e1906946.	10.0	57
18	Ball Milling Solid‣tate Synthesis of Highly Crystalline Prussian Blue Analogue Na _{2â^²<i>x</i>} MnFe(CN) ₆ Cathodes for Allâ€Climate Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	53

Υυν Οιαο

#	Article	IF	CITATIONS
19	Bioâ€Inspired Synthesis of an Ordered N/P Dualâ€Doped Porous Carbon and Application as an Anode for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2017, 23, 16051-16058.	3.3	41
20	Prussian blue coupling with zinc oxide as a protective layer: an efficient cathode for high-rate sodium-ion batteries. Chemical Communications, 2019, 55, 549-552.	4.1	40
21	Manipulating metal–sulfur interactions for achieving highâ€performance S cathodes for room temperature Li/Na–sulfur batteries. , 2021, 3, 253-270.		37
22	Three-Dimensional Superlithiophilic Interphase for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 5767-5774.	8.0	36
23	Advanced Characterization Techniques Paving the Way for Commercialization of Lowâ€Cost Prussian Blue Analog Cathodes. Advanced Functional Materials, 2022, 32, 2108616.	14.9	35
24	Architecture design of nitrogen-doped 3D bubble-like porous graphene for high performance sodium ion batteries. Inorganic Chemistry Frontiers, 2017, 4, 2017-2023.	6.0	34
25	Biomimetic Synthesis of Polydopamine Coated ZnFe ₂ O ₄ Composites as Anode Materials for Lithium-Ion Batteries. ACS Omega, 2018, 3, 2699-2705.	3.5	31
26	Rhombic Dodecahedron ZIFâ€8 Precursor: Designing Porous Nâ€Doped Carbon for Sodiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 3244-3249.	3.4	30
27	Microwave-induced solid-state synthesis of TiO2(B) nanobelts with enhanced lithium-storage properties. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	29
28	Surface modification of MoOxSy on porous TiO2 nanospheres as an anode material with highly reversible and ultra-fast lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 15128.	10.3	28
29	Ionic-Liquid-Assisted Synthesis of Self-Assembled TiO2-B Nanosheets under Microwave Irradiation and Their Enhanced Lithium Storage Properties. European Journal of Inorganic Chemistry, 2013, 2013, 5320-5328.	2.0	28
30	Rapid, Highâ€Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts. Small, 2019, 15, e1904881.	10.0	28
31	Construction of robust coupling interface between MoS2 and nitrogen doped graphene for high performance sodium ion batteries. Journal of Energy Chemistry, 2020, 48, 435-442.	12.9	26
32	Binders for sodium-ion batteries: progress, challenges and strategies. Chemical Communications, 2021, 57, 12406-12416.	4.1	26
33	Thermal Shock Synthesis of Nanocatalyst by 3Dâ€Printed Miniaturized Reactors. Small, 2020, 16, e2000509.	10.0	21
34	Tailoring the Sodium Storage Performance of Carbon Nanowires by Microstructure Design and Surface Modification with N, O and S Heteroatoms. ChemElectroChem, 2017, 4, 2877-2883.	3.4	19
35	Thermal Radiation Synthesis of Ultrafine Platinum Nanoclusters toward Methanol Oxidation. Small Methods, 2020, 4, 2000265.	8.6	16
36	Na _{1.51} Fe[Fe(CN) ₆] _{0.87} ·1.83H ₂ O Hollow Nanospheres via Nonâ€Aqueous Ballâ€Milling Route to Achieve High Initial Coulombic Efficiency and High Rate Capability in Sodiumâ€Ion Batteries. Small Methods, 2022, 6, .	8.6	15

#	Article	IF	CITATIONS
37	Continuous Fly-Through High-Temperature Synthesis of Nanocatalysts. Nano Letters, 2021, 21, 4517-4523.	9.1	13
38	A particle–carbon matrix architecture for long-term cycle stability of ZnFe ₂ 0 ₄ anode_RSC Advances_2016_6_35110-35117	3.6	10

38 ZnFe₂O₄ anode. RSC Advances, 2016, 6, 35110-35117.