
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1444748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of gastric emptying using a low fat meal: establishment of international control values. American Journal of Gastroenterology, 2000, 95, 1456-1462.	0.4	611
2	Interstitial cells of Cajal generate a rhythmic pacemaker current. Nature Medicine, 1998, 4, 848-851.	30.7	396
3	Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nature Nanotechnology, 2014, 9, 631-638.	31.5	382
4	Gut peristalsis is governed by a multitude of cooperating mechanisms. American Journal of Physiology - Renal Physiology, 2009, 296, G1-G8.	3.4	307
5	<i>Lactobacillus reuteri</i> enhances excitability of colonic AH neurons by inhibiting calciumâ€dependent potassium channel opening. Journal of Cellular and Molecular Medicine, 2009, 13, 2261-2270.	3.6	294
6	Gastric Electrical Stimulation in Intractable Symptomatic Gastroparesis. Digestion, 2002, 66, 204-212.	2.3	268
7	Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterology and Motility, 2014, 26, 98-107.	3.0	240
8	Interstitial cells of Cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterology, 1998, 114, 724-736.	1.3	227
9	Developmental origin andkit-dependent development of the interstitial cells of cajal in the mammalian small intestine. Developmental Dynamics, 1998, 211, 60-71.	1.8	204
10	Interstitial cells of Cajal as targets for pharmacological intervention in gastrointestinal motor disorders. Trends in Pharmacological Sciences, 1997, 18, 393-403.	8.7	172
11	The origin of segmentation motor activity in the intestine. Nature Communications, 2014, 5, 3326.	12.8	155
12	Gastrointestinal Stromal Tumors May Originate from a Subset of CD34-Positive Interstitial Cells of Cajal. American Journal of Pathology, 2000, 156, 1157-1163.	3.8	149
13	Physiology, Injury, and Recovery of Interstitial Cells of Cajal: Basic and Clinical Science. Gastroenterology, 2009, 137, 1548-1556.	1.3	147
14	Interstitial cells of Cajal and inflammation-induced motor dysfunction in the mouse small intestine. Gastroenterology, 2000, 119, 1590-1599.	1.3	132
15	High-conductance chloride channels generate pacemaker currents in interstitial cells of Cajal. Gastroenterology, 2002, 123, 1627-1636.	1.3	110
16	First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 559-579.	17.8	108
17	Two Independent Networks of Interstitial Cells of Cajal Work Cooperatively with the Enteric Nervous System to Create Colonic Motor Patterns. Frontiers in Neuroscience, 2011, 5, 93.	2.8	90
18	Gastrointestinal peristalsis: Joint action of enteric nerves, smooth muscle, and interstitial cells of Cajal. Microscopy Research and Technique, 1999, 47, 239-247.	2.2	87

#	Article	IF	CITATIONS
19	Regulation of slow wave frequency by IP ₃ -sensitive calcium release in the murine small intestine. American Journal of Physiology - Renal Physiology, 2001, 280, G439-G448.	3.4	83
20	Electrophysiologic control of motility in the human colon. Gastroenterology, 1985, 88, 500-511.	1.3	82
21	Pathology of Interstitial Cells of Cajal in Relation to Inflammation Revealed by Ultrastructure But Not Immunohistochemistry. American Journal of Pathology, 2002, 160, 1529-1540.	3.8	77
22	About the presence of interstitial cells of Cajal outside the musculature of the gastrointestinal tract. Journal of Cellular and Molecular Medicine, 2005, 9, 468-473.	3.6	75
23	P _{2x} â€purinoceptors of myenteric neurones from the guineaâ€pig ileum and their unusual pharmacological properties. British Journal of Pharmacology, 1996, 119, 1541-1548.	5.4	74
24	Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. American Journal of Physiology - Renal Physiology, 2018, 315, G896-G907.	3.4	74
25	ll. Gastric motility: lessons from mutant mice on slow waves and innervation. American Journal of Physiology - Renal Physiology, 2001, 281, G1129-G1134.	3.4	69
26	Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine. American Journal of Physiology - Renal Physiology, 2005, 289, G539-G549.	3.4	69
27	Interstitial Cells of Cajal: Update on Basic and Clinical Science. Current Gastroenterology Reports, 2014, 16, 363.	2.5	69
28	Co-operation between neural and myogenic mechanisms in the control of distension-induced peristalsis in the mouse small intestine. Journal of Physiology, 1998, 506, 843-856.	2.9	68
29	Generation of slow waves in membrane potential is an intrinsic property of interstitial cells of Cajal. American Journal of Physiology - Renal Physiology, 1999, 277, G409-G423.	3.4	61
30	Innervation of interstitial cells of Cajal by vasoactive intestinal polypeptide containing nerves in canine colon. Canadian Journal of Physiology and Pharmacology, 1990, 68, 922-932.	1.4	60
31	Neurogenic and Myogenic Properties of Pan-Colonic Motor Patterns and Their Spatiotemporal Organization in Rats. PLoS ONE, 2013, 8, e60474.	2.5	60
32	Intraluminal pressure patterns in the human colon assessed by high-resolution manometry. Scientific Reports, 2017, 7, 41436.	3.3	57
33	The search for the origin of rhythmicity in intestinal contraction; from tissue to single cells. Neurogastroenterology and Motility, 2000, 12, 3-9.	3.0	55
34	Inhibitory innervation of colonic smooth muscle cells and interstitial cells of Cajal. Canadian Journal of Physiology and Pharmacology, 1990, 68, 447-454.	1.4	54
35	Development of pacemaker activity and interstitial cells of cajal in the neonatal mouse small intestine. , 1998, 213, 271-282.		52
36	ERG K ⁺ currents regulate pacemaker activity in ICC. American Journal of Physiology - Renal Physiology, 2003, 285, G1249-G1258.	3.4	47

#	Article	IF	CITATIONS
37	Development of interstitial cells of Cajal in a full-term infant without an enteric nervous system. Gastroenterology, 2001, 120, 561-567.	1.3	45
38	Deficiency of intramuscular ICC increases fundic muscle excitability but does not impede nitrergic innervation. American Journal of Physiology - Renal Physiology, 2008, 294, G589-G594.	3.4	44
39	Generation of slow wave type action potentials in the mouse small intestine involves a non-L-type calcium channel. Canadian Journal of Physiology and Pharmacology, 1995, 73, 1502-1511.	1.4	43
40	Characterization of Simultaneous Pressure Waves as Biomarkers for Colonic Motility Assessed by High-Resolution Colonic Manometry. Frontiers in Physiology, 2018, 9, 1248.	2.8	42
41	Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory. American Journal of Physiology - Renal Physiology, 2015, 308, G287-G297.	3.4	39
42	Interstitial cells of Cajal and human colon motility in health and disease. American Journal of Physiology - Renal Physiology, 2021, 321, G552-G575.	3.4	39
43	Increase in stretch-induced rhythmic motor activity in the diabetic rat colon is associated with loss of ICC of the submuscular plexus. American Journal of Physiology - Renal Physiology, 2008, 294, G315-G326.	3.4	38
44	The gastric conduction system in health and disease: a translational review. American Journal of Physiology - Renal Physiology, 2021, 321, G527-G542.	3.4	38
45	Inwardly rectifying chloride channel activity in intestinal pacemaker cells. American Journal of Physiology - Renal Physiology, 2005, 288, G809-G821.	3.4	37
46	Electrical basis of excitation and inhibition of human colonic smooth muscle. Gastroenterology, 1986, 90, 1197-1204.	1.3	36
47	Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators. Experimental Physiology, 2017, 102, 329-346.	2.0	36
48	On the origin of rhythmic calcium transients in the ICC-MP of the mouse small intestine. American Journal of Physiology - Renal Physiology, 2011, 301, G835-G845.	3.4	33
49	On the nature of high-amplitude propagating pressure waves in the human colon. American Journal of Physiology - Renal Physiology, 2020, 318, G646-G660.	3.4	32
50	Motor patterns of the small intestine explained by phase-amplitude coupling of two pacemaker activities: the critical importance of propagation velocity. American Journal of Physiology - Cell Physiology, 2015, 309, C403-C414.	4.6	31
51	The cyclic motor patterns in the human colon. Neurogastroenterology and Motility, 2020, 32, e13807.	3.0	31
52	Interstitial cells of Cajal and adaptive relaxation in the mouse stomach. American Journal of Physiology - Renal Physiology, 2006, 291, G1129-G1136.	3.4	30
53	Excitability of canine colon circular muscle disconnected from the network of interstitial cells of Cajal. Canadian Journal of Physiology and Pharmacology, 1992, 70, 289-295.	1.4	28
54	Mast cell ionic channels: significance for stimulus–secretion coupling. Canadian Journal of Physiology and Pharmacology, 1992, 70, 1-7.	1.4	28

#	Article	IF	CITATIONS
55	Progenitor Cells of Interstitial Cells of Cajal: On the Road to Tissue Repair. Gastroenterology, 2008, 134, 1252-1254.	1.3	27
56	<i>Bifidobacterium longum </i> <scp>NCC</scp> 3001 inhibits <scp>AH</scp> neuron excitability. Neurogastroenterology and Motility, 2013, 25, e478-84.	3.0	27
57	Spatial Noise in Coupling Strength and Natural Frequency within a Pacemaker Network; Consequences for Development of Intestinal Motor Patterns According to a Weakly Coupled Phase Oscillator Model. Frontiers in Neuroscience, 2016, 10, 19.	2.8	27
58	Action potentials in gastrointestinal smooth muscle. Canadian Journal of Physiology and Pharmacology, 1991, 69, 1133-1142.	1.4	25
59	Nitric oxide decreases the excitability of interstitial cells of Cajal through activation of the BK channel. Journal of Cellular and Molecular Medicine, 2008, 12, 1718-1727.	3.6	24
60	The myogenic component in distention-induced peristalsis in the guinea pig small intestine. American Journal of Physiology - Renal Physiology, 2001, 280, G491-G500.	3.4	23
61	The myogenic and neurogenic components of the rhythmic segmentation motor patterns of the intestine. Frontiers in Neuroscience, 2014, 8, 78.	2.8	23
62	Enteric sensory neurons communicate with interstitial cells of Cajal to affect pacemaker activity in the small intestine. Pflugers Archiv European Journal of Physiology, 2014, 466, 1467-1475.	2.8	23
63	Heterogeneity in spontaneous and tetraethylammonium induced intracellular electrical activity in colonic circular muscle. Pflugers Archiv European Journal of Physiology, 1988, 412, 203-210.	2.8	22
64	Canine colonic circular muscle generates action potentials without the pacemaker component. Canadian Journal of Physiology and Pharmacology, 1994, 72, 70-81.	1.4	22
65	Volume-activated chloride currents in interstitial cells of Cajal. American Journal of Physiology - Renal Physiology, 2005, 289, G791-G797.	3.4	22
66	Muscarinic Regulation of Ether-a-go-go-Related Gene K+ Currents in Interstitial Cells of Cajal. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 1112-1123.	2.5	22
67	In situ recording from gut pacemaker cells. Pflugers Archiv European Journal of Physiology, 2008, 457, 243-251.	2.8	22
68	Survival dependency of intramuscular ICC on vagal afferent nerves in the cat esophagus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R302-R310.	1.8	22
69	Discrepancies between câ€Kit positive and Ano1 positive <scp>ICC</scp> â€ <scp>SMP</scp> in the <i>W/W</i> ^{<i>v</i>} and wildâ€type mouse colon; relationships with motor patterns and calcium transients. Neurogastroenterology and Motility, 2014, 26, 1298-1310.	3.0	21
70	Involvement of 5â€ <scp>HT</scp> ₃ and 5â€ <scp>HT</scp> ₄ receptors in colonic motor patterns in rats. Neurogastroenterology and Motility, 2015, 27, 914-928.	3.0	21
71	Maxi-channels recorded in situ from ICC and pericytes associated with the mouse myenteric plexus. American Journal of Physiology - Cell Physiology, 2012, 302, C1055-C1069.	4.6	20
72	Optimizing Autonomic Function Analysis via Heart Rate Variability Associated With Motor Activity of the Human Colon. Frontiers in Physiology, 2021, 12, 619722.	2.8	20

#	Article	IF	CITATIONS
73	IL-9 enhances growth of ICC, maintains network structure and strengthens rhythmicity of contraction in culture. Journal of Cellular and Molecular Medicine, 2006, 10, 687-694.	3.6	19
74	Associations Between Colonic Motor Patterns and Autonomic Nervous System Activity Assessed by High-Resolution Manometry and Concurrent Heart Rate Variability. Frontiers in Neuroscience, 2019, 13, 1447.	2.8	19
75	Mast cell-independent impairment of host defense and muscle contraction inT. spiralis-infected W/WVmice. American Journal of Physiology - Renal Physiology, 2001, 280, G640-G648.	3.4	18
76	Interstitial cells of Cajal, from structure to function. Frontiers in Neuroscience, 2013, 7, 43.	2.8	18
77	lgf1r ⁺ /CD34 ⁺ immature ICC are putative adult progenitor cells, identified ultrastructurally as fibroblastâ€ike ICC in Ws/Ws rat colon. Journal of Cellular and Molecular Medicine, 2009, 13, 3528-3540.	3.6	17
78	Transient outward potassium current in ICC. American Journal of Physiology - Renal Physiology, 2010, 298, G456-G466.	3.4	17
79	Relationships between motor patterns and intraluminal pressure in the 3-taeniated proximal colon of the rabbit. Scientific Reports, 2017, 7, 42293.	3.3	17
80	Cancer pain and neuropathic pain are associated with A <i>β</i> sensory neuronal plasticity in dorsal root ganglia and abnormal sprouting in lumbar spinal cord. Molecular Pain, 2018, 14, 174480691881009.	2.1	17
81	Haustral boundary contractions in the proximal 3-taeniated rabbit colon. American Journal of Physiology - Renal Physiology, 2016, 310, G181-G192.	3.4	16
82	Phase waves and trigger waves: emergent properties of oscillating and excitable networks in the gut. Journal of Physiology, 2018, 596, 4819-4829.	2.9	16
83	Ava[l-Pro9,N-MeLeu10] Substance P(7-11) (GR 73632) and Sar9, Met(O2)11 Increase Distention-Induced Peristalsis through Activation of Neurokinin-1 Receptors on Smooth Muscle and Interstitial Cells of Cajal. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 439-445.	2.5	15
84	Clotrimazole-sensitive K+ currents regulate pacemaker activity in interstitial cells of Cajal. American Journal of Physiology - Renal Physiology, 2007, 292, G1715-G1725.	3.4	15
85	Relationships Between Distention-, Butyrate- and Pellet-Induced Stimulation of Peristalsis in the Mouse Colon. Frontiers in Physiology, 2020, 11, 109.	2.8	15
86	The Sphincter of O'Beirne – Part 1: Study of 18 Normal Subjects. Digestive Diseases and Sciences, 2021, 66, 3516-3528.	2.3	15
87	Interstitial Cells of Cajal. Pancreas, 2011, 40, 137-143.	1.1	14
88	The Physiology and Pathophysiology of Interstitial Cells of Cajal: Pacemaking, Innervation, and Stretch Sensation. , 2018, , 305-335.		14
89	Ano1 is a better marker than c-Kit for transcript analysis of single interstitial cells of Cajal in culture. Cellular and Molecular Biology Letters, 2014, 19, 601-10.	7.0	13
90	Dual action of high energy adenine nucleotides in comparison with responses evoked by other adenine derivatives and intramural nerve stimulation on smooth muscle. European Journal of Pharmacology, 1981, 74, 175-180.	3.5	12

#	Article	IF	CITATIONS
91	Rat model of cancer-induced bone pain: changes in nonnociceptive sensory neurons in vivo. Pain Reports, 2017, 2, e603.	2.7	12
92	Ionized calciumâ€binding adaptor molecule 1 positive macrophages and HOâ€1 upâ€regulation in intestinal muscularis resident macrophages. Anatomical Record, 2017, 300, 1114-1122.	1.4	12
93	Slow wave contraction frequency plateaux in the small intestine are composed of discrete waves of interval increase associated with dislocations. Experimental Physiology, 2018, 103, 1087-1100.	2.0	12
94	Characterization of haustral activity in the human colon. American Journal of Physiology - Renal Physiology, 2021, 320, G1067-G1080.	3.4	12
95	The effects of cholecystokinin-octapeptide and pentagastrin on electrical and motor activities of canine colonic circular muscle. Canadian Journal of Physiology and Pharmacology, 1984, 62, 1440-1447.	1.4	11
96	Toward a Concept of Stretch Coupling in Smooth Muscle: A Thesis by Lars Thuneberg on Contractile Activity in Neonatal Interstitial Cells of Cajal. Anatomical Record, 2010, 293, 1543-1552.	1.4	11
97	Stimulusâ€induced pacemaker activity in interstitial cells of Cajal associated with the deep muscular plexus of the small intestine. Neurogastroenterology and Motility, 2016, 28, 1064-1074.	3.0	11
98	Intraluminal prucalopride increases propulsive motor activities via luminal 5â€HT ₄ receptors in the rabbit colon. Neurogastroenterology and Motility, 2019, 31, e13598.	3.0	11
99	Cellâ€specific effects of nitric oxide on the efficiency and frequency of long distance contractions in murine colon. Neurogastroenterology and Motility, 2019, 31, e13589.	3.0	11
100	On the origin of rhythmic contractile activity of the esophagus in early achalasia, a clinical case study. Frontiers in Neuroscience, 2013, 7, 77.	2.8	10
101	Cholinergic signalling-regulated KV7.5 currents are expressed in colonic ICC-IM but not ICC-MP. Pflugers Archiv European Journal of Physiology, 2014, 466, 1805-1818.	2.8	10
102	Induction of rhythmic transient depolarizations associated with waxing and waning of slow wave activity in intestinal smooth muscle. American Journal of Physiology - Renal Physiology, 2015, 308, G427-G433.	3.4	10
103	Nitric Oxide Is Essential for Generating the Minute Rhythm Contraction Pattern in the Small Intestine, Likely via ICC-DMP. Frontiers in Neuroscience, 2020, 14, 592664.	2.8	10
104	The Sphincter of O'Beirne—Part 2: Report of a Case of Chronic Constipation with Autonomous Dyssynergia. Digestive Diseases and Sciences, 2021, 66, 3529-3541.	2.3	10
105	Interstitial Cells of Cajal : Pathology , Injury and Repair = خلايا كاجال الخلالية Journal, 2012, 12, 411-421.	عÙ,∂ù	اÙ,Ø£Ù@
106	Autism Spectrum Disorder in Children Is Not Associated With Abnormal Autonomic Nervous System Function: Hypothesis and Theory. Frontiers in Psychiatry, 2022, 13, 830234.	2.6	10
107	On the Pharmacological and Physiological Role of Glibenclamide‣ensitive Potassium Channels in Colonic Smooth Muscle. Basic and Clinical Pharmacology and Toxicology, 1992, 71, 365-370.	0.0	9
108	Neurotensin Changes Propulsive Activity into a Segmental Motor Pattern in the Rat Colon. Journal of Neurogastroenterology and Motility, 2016, 22, 517-528.	2.4	9

#	Article	IF	CITATIONS
109	Unique distribution of interstitial cells of Cajal in the feline pylorus. Cell and Tissue Research, 2007, 329, 13-24.	2.9	8
110	Commentary: Phase-amplitude coupling at the organism level: The amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow gastric basal rhythm. Frontiers in Neuroscience, 2017, 11, 102.	2.8	8
111	A myogenic motor pattern in mice lacking myenteric interstitial cells of Cajal explained by a second coupled oscillator network. American Journal of Physiology - Renal Physiology, 2020, 318, G225-G243.	3.4	8
112	The powerful advantages of extracellular electrical recording. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 372-372.	17.8	7
113	Diagnosis of colonic dysmotility associated with autonomic dysfunction in patients with chronic refractory constipation. Scientific Reports, 2022, 12, .	3.3	7
114	Inhibition of fundic strips from guinea-pig stomach: The effect of theophylline on the membrane potential, muscle contraction and ion fluxes. European Journal of Pharmacology, 1979, 57, 1-11.	3.5	6
115	Sa2007 Colonic Motor Patterns in Patients With Chronic Constipation Assessed by High Resolution Manometry. Gastroenterology, 2014, 146, S-353.	1.3	6
116	High-Pressure Tactic: Colonic Manometry in Chronic Constipation. Digestive Diseases and Sciences, 2018, 63, 2820-2822.	2.3	6
117	Trans-illumination intestine projection imaging of intestinal motility in mice. Nature Communications, 2021, 12, 1682.	12.8	6
118	Immunoglobulin E mediated membrane conductance changes in rat basophilic leukemia cells. Canadian Journal of Physiology and Pharmacology, 1988, 66, 328-331.	1.4	5
119	Frontiers in research into interstitial cells of Cajal. Journal of Cellular and Molecular Medicine, 2005, 9, 230-231.	3.6	5
120	Expression of P2X3 and P2X5 Myenteric Receptors Varies During the Intestinal Postnatal Development in the Guinea Pig. Cellular and Molecular Neurobiology, 2014, 34, 727-736.	3.3	5
121	The phase response and state space of slow wave contractions in the small intestine. Experimental Physiology, 2017, 102, 1118-1132.	2.0	5
122	Searching for intrinsic properties and functions of interstitial cells of Cajal. Current Opinion in Gastroenterology, 1999, 15, 26.	2.3	5
123	Generation of spiking activity in circular muscle cells of the canine colon. Canadian Journal of Physiology and Pharmacology, 1987, 65, 2147-2150.	1.4	4
124	Gating of maxi channels observed from pseudo-phase portraits. American Journal of Physiology - Cell Physiology, 2013, 304, C450-C457.	4.6	4
125	Pacemaker network properties determine intestinal motor pattern behaviour. Experimental Physiology, 2019, 104, 623-624.	2.0	4
126	Noradrenaline inhibits neurogenic propulsive motor patterns but not neurogenic segmenting haustral progression in the rabbit colon. Neurogastroenterology and Motility, 2019, 31, e13567.	3.0	4

#	Article	IF	CITATIONS
127	Habitual rapid food intake and ineffective esophageal motility. World Journal of Gastroenterology, 2013, 19, 2270.	3.3	4
128	Probing heart rate variability to determine parasympathetic dysfunction. Physiological Reports, 2018, 6, e13713.	1.7	3
129	Heterogeneous expression of transient outward currents in smooth muscle cells of the mouse small intestine. Journal of Physiology, 2002, 544, 19-27.	2.9	2
130	Statistical Assessment of Change Point Detectors for Single Molecule Kinetic Analysis. Journal of Membrane Biology, 2013, 246, 407-420.	2.1	2
131	Vagal Fibers Form Associations With Interstitial Cells of Cajal During Fetal Development. Anatomical Record, 2015, 298, 1780-1785.	1.4	2
132	A Personal Perspective on the Development of Our Understanding of the Myogenic Control Mechanisms of Gut Motor Function. Advances in Experimental Medicine and Biology, 2016, 891, 11-19.	1.6	2
133	Recent advances in intestinal smooth muscle research: from muscle strips and single cells, via ICC networks to whole organ physiology and assessment of human gut motor dysfunction. Journal of Smooth Muscle Research, 2019, 55, 68-80.	1.2	2
134	Transient Anal Sphincter Relaxations Are a Normal Phenomenon in Healthy Subjects. Journal of Neurogastroenterology and Motility, 2020, 26, 552-553.	2.4	2
135	The Pressure's on: Finding the Cause of Diverticula Formation. Digestive Diseases and Sciences, 2021, 66, 668-670.	2.3	2
136	Distal Colon Motor Coordination: The Role of the Coloanal Reflex and the Rectoanal Inhibitory Reflex in Sampling, Flatulence, and Defecation. Frontiers in Medicine, 2021, 8, 720558.	2.6	2
137	Relationship between transmural potential difference and smooth muscle slow waves and contractility in the rabbit small intestine in vitro. Canadian Journal of Physiology and Pharmacology, 1988, 66, 1161-1165.	1.4	1
138	Intrinsic inhibitory innervation of the stomach. British Journal of Pharmacology, 2005, 146, 163-164.	5.4	1
139	Noninvasive measurements to evaluate the effects of military training on the human autonomic nervous system. Asian Biomedicine, 2014, 8, 453-461.	0.3	1
140	99 COLONIC DYSMOTILITY, AUTONOMIC DYSFUNCTION AND ABNORMAL DEFECATION REFLEXES IN PATIENTS WITH CHRONIC CONSTIPATION. Gastroenterology, 2021, 160, S-22.	1.3	1
141	850b The intestine switches between propulsion and segmentation through a nutrient-or neurally-induced transient pacemaker. Gastroenterology, 2014, 146, S-145.	1.3	0
142	Sa2042 Dependence of Colonic Motor Patterns on 5-HT3 and 5-HT4 Receptor Activation in the Rat. Gastroenterology, 2014, 146, S-361-S-362.	1.3	0
143	Interactions between neurogenic and myogenic control mechanisms of intestinal and colonic motility. Autonomic Neuroscience: Basic and Clinical, 2015, 192, 3.	2.8	0

144 Frozen naphthalocyanine micelles for intestinal imaging. , 2015, , .

#	Article	IF	CITATIONS
145	Simultaneous Pressure Waves are an Essential Component of Human Colon Motor Function Assessment, Using High-resolution Manometry. Gastroenterology, 2017, 152, S50.	1.3	0
146	Modulation of contractions in the small intestine indicate desynchronization via supercritical Andronov–Hopf bifurcation. Scientific Reports, 2020, 10, 15099.	3.3	0
147	The Defecation Reflex Assessed by High-Resolution Colonic Manometry. Journal of the Canadian Association of Gastroenterology, 2021, 4, 1-2.	0.3	Ο
148	Fr431 ANALYSIS OF AUTONOMIC NERVOUS SYSTEM REACTIVITY ASSOCIATED WITH HIGH-AMPLITUDE PROPAGATING PRESSURE WAVES OF THE HUMAN COLON IN HEALTHY SUBJECTS. Gastroenterology, 2021, 160, S-315.	1.3	0
149	Fr444 EFFECTS OF SACRAL PHOTOBIOMODULATION ON THE AUTONOMIC NERVOUS SYSTEM IN PATIENTS WITH COLONIC DYSMOTILITY. Gastroenterology, 2021, 160, S-320.	1.3	0
150	Generating bowel movements that facilitate nutrient absorption. Canadian Young Scientist Journal, 2014, 2014, 4-13.	0.0	0
151	Physiological and Pathophysiological Roles of VIP, Somatostatin, Opioids, Galanin, GRP, and Secretin. , 2019, , 401-428.		0
152	Mast Cell and Muscle Interactions in Animals and Man. , 2020, , 237-246.		0
153	Smooth Muscle Function in Inflammatory Bowel Disease. , 2020, , 109-118.		0