
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1444500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible organic photodetectors and their use in wearable systems. , 2022, 125, 103145.		13
2	Developing the Nondevelopable: Creating Curved‣urface Electronics from Nonstretchable Devices. Advanced Materials, 2022, 34, e2106683.	11.1	22
3	Smart Face Mask Based on an Ultrathin Pressure Sensor for Wireless Monitoring of Breath Conditions. Advanced Materials, 2022, 34, e2107758.	11.1	75
4	Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunctional Materials, 2022, 5, 032001.	2.4	37
5	Ultrathin and Efficient Organic Photovoltaics with Enhanced Air Stability by Suppression of Zinc Element Diffusion. Advanced Science, 2022, 9, e2105288.	5.6	24
6	Smart Face Mask Based on an Ultrathin Pressure Sensor for Wireless Monitoring of Breath Conditions (Adv. Mater. 6/2022). Advanced Materials, 2022, 34, .	11.1	4
7	Solution-Processed Electron-Transport Layer-free Organic Photovoltaics with Liquid Metal Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 14165-14173.	4.0	11
8	Flexible Thin-Film Device for Powering Soft Robots. Journal of Robotics and Mechatronics, 2022, 34, 227-230.	0.5	4
9	Flexible self-charging power sources. Nature Reviews Materials, 2022, 7, 870-886.	23.3	159
10	Air‣table Ultraâ€Flexible Organic Photonic System for Cardiovascular Monitoring. Advanced Materials Technologies, 2022, 7, .	3.0	5
11	Developing the Nondevelopable: Creating Curved‣urface Electronics from Nonstretchable Devices (Adv. Mater. 22/2022). Advanced Materials, 2022, 34, .	11.1	0
12	Antimicrobial second skin using copper nanomesh. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
13	Ultraflexible Integrated Organic Electronics for Ultrasensitive Photodetection. Advanced Materials Technologies, 2021, 6, .	3.0	15
14	Well-rounded devices: the fabrication of electronics on curved surfaces – a review. Materials Horizons, 2021, 8, 1926-1958.	6.4	39
15	Simultaneous measurement of contractile force and field potential of dynamically beating human iPS cell-derived cardiac cell sheet-tissue with flexible electronics. Lab on A Chip, 2021, 21, 3899-3909.	3.1	9
16	Flexible organic thin-film transistor immunosensor printed on a one-micron-thick film. Communications Materials, 2021, 2, .	2.9	42
17	Recent Progress of Flexible Image Sensors for Biomedical Applications. Advanced Materials, 2021, 33, e2004416.	11.1	117
18	Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes. Nature Communications, 2021, 12, 2234.	5.8	121

#	Article	IF	CITATIONS
19	Photoactive layer formation in the dark for high performance of air-processable organic photovoltaics. JPhys Materials, 2021, 4, 044016.	1.8	4
20	Stretchable organic optoelectronic devices: Design of materials, structures, and applications. Materials Science and Engineering Reports, 2021, 146, 100631.	14.8	48
21	Direct gold bonding for flexible integrated electronics. Science Advances, 2021, 7, eabl6228.	4.7	25
22	Efficient and Mechanically Robust Ultraflexible Organic Solar Cells Based on Mixed Acceptors. Joule, 2020, 4, 128-141.	11.7	101
23	Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nature Communications, 2020, 11, 4508.	5.8	141
24	The Future of Flexible Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2000765.	10.2	391
25	Supercapacitors: An Efficient Ultraâ€Flexible Photoâ€Charging System Integrating Organic Photovoltaics and Supercapacitors (Adv. Energy Mater. 20/2020). Advanced Energy Materials, 2020, 10, 2070090.	10.2	4
26	Highly efficient organic photovoltaics with enhanced stability through the formation of doping-induced stable interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6391-6397.	3.3	53
27	Nanograting Structured Ultrathin Substrate for Ultraflexible Organic Photovoltaics. Small Methods, 2020, 4, 1900762.	4.6	18
28	An Efficient Ultraâ€Flexible Photoâ€Charging System Integrating Organic Photovoltaics and Supercapacitors. Advanced Energy Materials, 2020, 10, 2000523.	10.2	46
29	Ultraflexible Organic Photovoltaics: Nanograting Structured Ultrathin Substrate for Ultraflexible Organic Photovoltaics (Small Methods 3/2020). Small Methods, 2020, 4, 2070013.	4.6	0
30	Organic Photovoltaics: Toward Self-Powered Wearable Electronics. Proceedings of the IEEE, 2019, 107, 2137-2154.	16.4	56
31	Highly Stretchable Metallic Nanowire Networks Reinforced by the Underlying Randomly Distributed Elastic Polymer Nanofibers via Interfacial Adhesion Improvement. Advanced Materials, 2019, 31, e1903446.	11.1	106
32	Flexible Electronics: Highly Stretchable Metallic Nanowire Networks Reinforced by the Underlying Randomly Distributed Elastic Polymer Nanofibers via Interfacial Adhesion Improvement (Adv. Mater.) Tj ETQq0 0	0 ngBT /O	ver b ock 10 Tf
33	A Highly Responsive Organic Image Sensor Based on a Twoâ€Terminal Organic Photodetector with Photomultiplication. Advanced Materials, 2019, 31, e1903687.	11.1	123
34	Ultrathin Organic Electrochemical Transistor with Nonvolatile and Thin Gel Electrolyte for Longâ€Term Electrophysiological Monitoring. Advanced Functional Materials, 2019, 29, 1906982.	7.8	79
35	High Operation Stability of Ultraflexible Organic Solar Cells with Ultravioletâ€Filtering Substrates. Advanced Materials, 2019, 31, e1808033.	11.1	44
36	Durable Ultraflexible Organic Photovoltaics with Novel Metalâ€Oxideâ€Free Cathode. Advanced Functional Materials, 2019, 29, 1808378.	7.8	34

#	Article	IF	CITATIONS
37	Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nature Nanotechnology, 2019, 14, 156-160.	15.6	195
38	Thermally stable, highly efficient, ultraflexible organic photovoltaics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4589-4594.	3.3	106
39	Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 2018, 561, 516-521.	13.7	743
40	Transparent Electrodes: Reverse-Offset Printed Ultrathin Ag Mesh for Robust Conformal Transparent Electrodes for High-Performance Organic Photovoltaics (Adv. Mater. 26/2018). Advanced Materials, 2018, 30, 1870190.	11.1	2
41	Lowâ€Power Monolithically Stacked Organic Photodiodeâ€Blocking Diode Imager by Turnâ€On Voltage Engineering. Advanced Electronic Materials, 2018, 4, 1800311.	2.6	18
42	Ultraflexible Nearâ€Infrared Organic Photodetectors for Conformal Photoplethysmogram Sensors. Advanced Materials, 2018, 30, e1802359.	11.1	171
43	Reverseâ€Offset Printed Ultrathin Ag Mesh for Robust Conformal Transparent Electrodes for Highâ€Performance Organic Photovoltaics. Advanced Materials, 2018, 30, e1707526.	11.1	59
44	Simple action potential measurement of cardiac cell sheet utilizing electronic sheet. Artificial Life and Robotics, 2018, 23, 321-327.	0.7	2
45	High Mobility WS ₂ Transistors Realized by Multilayer Graphene Electrodes and Application to High Responsivity Flexible Photodetectors. Advanced Functional Materials, 2017, 27, 1703448.	7.8	113
46	Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nature Energy, 2017, 2, 780-785.	19.8	369
47	Printing Technology: Recent Progress in the Development of Printed Thinâ€Film Transistors and Circuits with Highâ€Resolution Printing Technology (Adv. Mater. 25/2017). Advanced Materials, 2017, 29, .	11.1	2
48	Recent Progress in the Development of Printed Thinâ€Film Transistors and Circuits with Highâ€Resolution Printing Technology. Advanced Materials, 2017, 29, 1602736.	11.1	243
49	Recent progress of fully-printed and ultra-flexible integrated circuits. , 2016, , .		0
50	Fully printed and flexible ferroelectric capacitors based on a ferroelectric polymer for pressure detection. Japanese Journal of Applied Physics, 2016, 55, 10TA18.	0.8	14
51	Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications. Scientific Reports, 2016, 6, 25714.	1.6	134
52	Free-Standing Organic Transistors and Circuits with Sub-Micron Thicknesses. Scientific Reports, 2016, 6, 27450.	1.6	39
53	Printed 2 V-operating organic inverter arrays employing a small-molecule/polymer blend. Scientific Reports, 2016, 6, 34723.	1.6	41
54	Three-Dimensional, Inkjet-Printed Organic Transistors and Integrated Circuits with 100% Yield, High Uniformity, and Long-Term Stability. ACS Nano, 2016, 10, 10324-10330.	7.3	112

#	Article	IF	CITATIONS
55	The effect of mechanical strain on contact resistance in flexible printed organic thin-film transistors. Flexible and Printed Electronics, 2016, 1, 035005.	1.5	11
56	Ultrathin flexible memory devices based on organic ferroelectric transistors. Japanese Journal of Applied Physics, 2016, 55, 10TA04.	0.8	7
57	Vertically Stacked Complementary Organic Fieldâ€Effect Transistors and Logic Circuits Fabricated by Inkjet Printing. Advanced Electronic Materials, 2016, 2, 1600046.	2.6	31
58	Enhanced memory characteristics in organic ferroelectric field-effect transistors through thermal annealing. AIP Advances, 2015, 5, .	0.6	4
59	Reverseâ€Offset Printing Optimized for Scalable Organic Thinâ€Film Transistors with Submicrometer Channel Lengths. Advanced Electronic Materials, 2015, 1, 1500145.	2.6	67
60	Biosensors: Printed Organic Transistors with Uniform Electrical Performance and Their Application to Amplifiers in Biosensors (Adv. Electron. Mater. 7/2015). Advanced Electronic Materials, 2015, 1, .	2.6	3
61	Flip-flop logic circuit based on fully solution-processed organic thin film transistor devices with reduced variations in electrical performance. Japanese Journal of Applied Physics, 2015, 54, 04DK03.	0.8	17
62	Cysteine detection in water using an organic field-effect transistor with a gold extended-gate electrode. Japanese Journal of Applied Physics, 2015, 54, 04DK01.	0.8	10
63	Extended-gate organic field-effect transistor for the detection of histamine in water. Japanese Journal of Applied Physics, 2015, 54, 04DK02.	0.8	16
64	Enhanced adhesion mechanisms between printed nano-silver electrodes and underlying polymer layers. Nanotechnology, 2015, 26, 321001.	1.3	20
65	A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosensors and Bioelectronics, 2015, 74, 45-48.	5.3	98
66	Printed Organic Transistors with Uniform Electrical Performance and Their Application to Amplifiers in Biosensors. Advanced Electronic Materials, 2015, 1, 1400052.	2.6	71
67	Control of threshold voltage in organic thin-film transistors by modifying gate electrode surface with MoOX aqueous solution and inverter circuit applications. Applied Physics Letters, 2015, 106, .	1.5	20
68	Printed Organic Thin-Film Transistors. , 2015, , 139-154.		3
69	Highly stable flexible printed organic thin-film transistor devices under high strain conditions using semiconducting polymers. Japanese Journal of Applied Physics, 2015, 54, 04DK10.	0.8	13
70	Inkjet-printed copper electrodes using photonic sintering and their application to organic thin-film transistors. Organic Electronics, 2015, 25, 131-134.	1.4	52
71	A Label-Free Immunosensor for IgG Based on an Extended-Gate Type Organic Field Effect Transistor. Materials, 2014, 7, 6843-6852.	1.3	53
72	Accurate and reproducible detection of proteins in water using an extended-gate type organic transistor biosensor. Applied Physics Letters, 2014, 104, .	1.5	85

#	Article	IF	CITATIONS
73	15.1: <i>Invited Paper</i> : Printed Organic TFT Array and Integrated Circuits. Digest of Technical Papers SID International Symposium, 2014, 45, 180-182.	0.1	4
74	An extended-gate type organic field effect transistor functionalised by phenylboronic acid for saccharide detection in water. Chemical Communications, 2014, 50, 15613-15615.	2.2	65
75	Fine patterning method for silver nanoparticle electrodes using differential hydrophobic and hydrophilic surface properties. Japanese Journal of Applied Physics, 2014, 53, 04EK01.	0.8	6
76	Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nature Communications, 2014, 5, 4147.	5.8	337
77	High-speed operation in printed organic inverter circuits with short channel length. Organic Electronics, 2014, 15, 2696-2701.	1.4	30
78	Improvement of mechanical durability on organic TFT with printed electrodes prepared from nanoparticle ink. Applied Surface Science, 2014, 294, 20-23.	3.1	19
79	Fully Solution-Processed Flexible Organic Thin Film Transistor Arrays with High Mobility and Exceptional Uniformity. Scientific Reports, 2014, 4, 3947.	1.6	187
80	Integrated circuits using fully solution-processed organic TFT devices with printed silver electrodes. Organic Electronics, 2013, 14, 3362-3370.	1.4	47
81	Suppression of threshold voltage shifts in organic thinâ€film transistors with bilayer gate dielectrics. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 839-844.	0.8	13
82	Strain sensitivity and durability in p-type and n-type organic thin-film transistors with printed silver electrodes. Scientific Reports, 2013, 3, 2048.	1.6	50
83	Profile Control of Inkjet Printed Silver Electrodes and Their Application to Organic Transistors. ACS Applied Materials & Interfaces, 2013, 5, 3916-3920.	4.0	107
84	Patterning Method for Silver Nanoparticle Electrodes in Fully Solution-Processed Organic Thin-Film Transistors Using Selectively Treated Hydrophilic and Hydrophobic Surfaces. Japanese Journal of Applied Physics, 2013, 52, 05DB05.	0.8	11
85	Stable organic thin-film transistors using full solution-processing and low-temperature sintering silver nanoparticle inks. Organic Electronics, 2012, 13, 1660-1664.	1.4	31
86	Organic transistors with high thermal stability for medical applications. Nature Communications, 2012, 3, 723.	5.8	290
87	Organic integrated circuits using room-temperature sintered silver nanoparticles as printed electrodes. Organic Electronics, 2012, 13, 3296-3301.	1.4	46
88	Reverse DC bias stress shifts in organic thinâ€film transistors with gate dielectrics using parylene . Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2073-2077.	0.8	31
89	Organic Thin-film Transistors Fabricated by Printing Technology. Journal of the Society of Mechanical Engineers, 2012, 115, 463-466.	0.0	0
90	Investigation of organic thin-film transistors for electrostatic discharge applications. , 2011, , .		0

6

#	Article	IF	CITATIONS
91	Study of Organic Thin-Film Transistors Under Electrostatic Discharge Stresses. IEEE Electron Device Letters, 2011, 32, 967-969.	2.2	11
92	Organic Pseudo-CMOS Circuits for Low-Voltage Large-Gain High-Speed Operation. IEEE Electron Device Letters, 2011, 32, 1448-1450.	2.2	61
93	Fe3Si nanodots epitaxially grown on Si(111) substrates using ultrathin SiO2 film technique. Thin Solid Films, 2011, 519, 8512-8515.	0.8	8
94	Pseudo-CMOS: A Design Style for Low-Cost and Robust Flexible Electronics. IEEE Transactions on Electron Devices, 2011, 58, 141-150.	1.6	213
95	A 4 V Operation, Flexible Braille Display Using Organic Transistors, Carbon Nanotube Actuators, and Organic Static Randomâ€Access Memory. Advanced Functional Materials, 2011, 21, 4019-4027.	7.8	128
96	Control of threshold voltage in low-voltage organic complementary inverter circuits with floating gate structures. Applied Physics Letters, 2011, 98, .	1.5	56
97	Pseudo-CMOS: A novel design style for flexible electronics. , 2010, , .		9
98	Thermal stability of organic thin-film transistors with self-assembled monolayer dielectrics. Applied Physics Letters, 2010, 96, 053302.	1.5	48
99	Effects of the alkyl chain length in phosphonic acid self-assembled monolayer gate dielectrics on the performance and stability of low-voltage organic thin-film transistors. Applied Physics Letters, 2009, 95, .	1.5	117
100	Effects of annealing on electronic and structural characteristics of pentacene thin-film transistors on polyimide gate dielectrics. Applied Physics Letters, 2009, 95, .	1.5	24