Dimitri Veras

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/1444042/publications.pdf
Version: 2024-02-01

Birth cluster simulations of planetary systems with multiple super-Earths: initial conditions for
3 white dwarf pollution drivers. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2460-2473.

4 Mathematical encoding within multiresonant planetary systems as SETI beacons. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4945-4950.
7 Horizontal spreading of planetary debris accreted by white dwarfs. Monthly Notices of the Royal
$7 \quad$ Astronomical Society, 2021, 503, 1646-1667.
8 On the role of resonances in polluting white dwarfs by asteroids. Monthly Notices of the Royal
Astronomical Society, 2021, 504, 3375-3386.
9 The pedagogical representation of mass functions with LECO and their origin. European Journal of
$9 \quad$ Physics, 2021, 42, 035605.
$4.4 \quad 21$
4.4

12

10 White dwarfs with planetary remnants in the era of <i>Gaia</i> â€"I. Six emission line systems. Monthly
4.4

15

The post-main-sequence fate of the HR 8799 planetary system. Monthly Notices of the Royal
12 Astronomical Society, 2021, 505, 1557-1566.
4.4

6

Spinâ $€^{\text {" Orbit Resonances of High-eccentricity Asteroids: Regular, Switching, and Jumping. Planetary }}$
$13 \quad$ Science Journal, 2021, 2, 108.
$3.6 \quad 2$

Planetary magnetosphere evolution around post-main-sequence stars. Monthly Notices of the Royal
14 Astronomical Society, 2021, 506, 1697-1703.
$4.4 \quad 0$

The entry geometry and velocity of planetary debris into the Roche sphere of a white dwarf. Monthly
Notices of the Royal Astronomical Society, 2021, 506, 1148-1164.
$4.4 \quad 12$

Significant interstellar object production by close stellar flybys. Astronomy and Astrophysics, 2021,
$5.1 \quad 12$
12
651, A38.

17 White dwarf planetary debris dependence on physical structure distributions within asteroid belts.
Monthly Notices of the Royal Astronomical Society, 2021, 506, 4031-4047.

21 Short-term stability of particles in the WD J0914+1914 white dwarf planetary system. Monthly Notices

TESS Asteroseismic Analysis of the Known Exoplanet Host Star HD 222076. Astrophysical Journal, 2020, 896, 65.
Survivability of radio-loud planetary cores orbiting white dwarfs. Monthly Notices of the Royal
Astronomical Society, 2019, 488, 153-163.

TESS Asteroseismology of the Known Red-giant Host Stars HD 212771 and HD 203949. Astrophysical Journal, 2019, 885, 31.

A Gap in the Mass Distribution for Warm Neptune and Terrestrial Planets. Astrophysical Journal
Letters, 2019, 880, L1.

Tidal circularization of gaseous planets orbiting white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2941-2953.

Embedding planetesimals into white dwarf discs from large distances. Monthly Notices of the Royal Astronomical Society, 2019, 489, 168-175.

Orbital relaxation and excitation of planets tidally interacting with white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3831-3848.

Explicit relations and criteria for eclipses, transits, and occultations. Monthly Notices of the Royal
Astronomical Society, 2019, 483, 3919-3949.

Speeding past planets? Asteroids radiatively propelled by giant branch Yarkovsky effects. Monthly Notices of the Royal Astronomical Society, 2019, 485, 708-724.

A planetesimal orbiting within the debris disc around a white dwarf star. Science, 2019, 364, 66-69.
12.6

131

Chaotic Rotation and Evolution of Asteroids and Small Planets in High-eccentricity Orbits around White Dwarfs. Astrophysical Journal, 2019, 886, 127.

> Driving white dwarf metal pollution through unstable eccentric periodic orbits. Astronomy and
> Astrophysics, 2019,629, A126.
5.1

Implications of the interstellar object 1I/'Oumuamua for planetary dynamics and planetesimal formation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3031-3038.

Interstellar Object â€ ${ }^{\mathrm{TM}}$ Oumuamua as an Extinct Fragment of an Ejected Cometary Planetesimal.
Astrophysical Journal Letters, 2018, 856, L7.

Unstable low-mass planetary systems as drivers of white dwarf pollution. Monthly Notices of the
50 Royal Astronomical Society, 2018, 476, 3939-3955.
4.4

86

51 Infrared Variability of Two Dusty White Dwarfs. Astrophysical Journal, 2018, 866, 108.
4.5

35

Effects of non-Kozai mutual inclinations on two-planet system stability through all phases of stellar evolution. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2180-2188.

Dynamical and Biological Panspermia Constraints Within Multiplanet Exosystems. Astrobiology, 2018,
18, 1106-1122.

Fast spectrophotometry of WDâ€\%o1145+017. Monthly Notices of the Royal Astronomical Society, 2018, 481,
703-714.
55 The critical binary star separation for a planetary system origin of white dwarf pollution. Monthly
Notices of the Royal Astronomical Society, 2018, 473, 2871-2880.

Binary star influence on post-main-sequence multi-planet stability. Monthly Notices of the Royal

57	Weighing in on the masses of retired A stars with asteroseismology: K2 observations of the exoplanet-host star HD 212771. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1360
58	Deposition of steeply infalling debris around white dwarf stars. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1575-1593.
59	The fate of exomoons in white dwarf planetary systems. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2557-2564.
60	The unstable fate of the planet orbiting the A star in the HD 131399 triple stellar system. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1499-1504.
61	Explaining the variability of WD $1145+017$ with simulations of asteroid tidal disruption. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1008-1022.
62	Mass and eccentricity constraints on the planetary debris orbiting the white dwarf WD 1145+017. Monthly Notices of the Royal Astronomical Society, 2017, 464, 321-328.
63	Eclipse, transit and occultation geometry of planetary systems at exo-syzygy. Monthly N Royal Astronomical Society, 2017, 468, 2672-2683.

Formation of planetary debris discs around white dwarfs â€" II. Shrinking extremely eccentric collisionless rings. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3453-3459.
4.4

91

Eight billion asteroids in the Oort cloud. Monthly Notices of the Royal Astronomical Society, 2015,
446, 2059-2064.
2.5
51

The formation of the solar system. Physica Scripta, 2015, 90, 068001.
79 The formation of the solar system. Physica Scripta, 2015, 90, 068001.2.5

80 Prospects for detecting decreasing exoplanet frequency with main-sequence age using<i>PLATO</i>.
Monthly Notices of the Royal Astronomical Society, 2015, 453, 67-72.
4.4

26

```
81 A wide binary trigger for white dwarf pollution. Monthly Notices of the Royal Astronomical Society,
2015, 454, 53-63.
```

Detectable close-in planets around white dwarfs through late unpacking. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1049-1058.
4.4

92
83 Long-term evolution of three-planet systems to the post-main sequence and beyond. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1404-1419.The great escape $\hat{\text { â " III. Placing post-main-sequence evolution of planetary and binary systems in a }}$Galactic context. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1127-1140.
91 The Long-Term Dynamical Evolution of Planetary Systems. , 2014, , 35

Planetary orbital equations in externally-perturbed systems: position and velocity-dependent forces.
Celestial Mechanics and Dynamical Astronomy, 2013, 115, 123-141.
1.4

Simulations of two-planet systems through all phases of stellar evolution: implications for the
93 instability boundary and white dwarf pollution. Monthly Notices of the Royal Astronomical Society,
4.4

2013, 431, 1686-1708.

A simple scaling for the minimum instability time-scale of two widely spaced planets. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 434, L11-L15.

Exoplanets beyond the Solar neighbourhood: Galactic tidal perturbations. Monthly Notices of the
Royal Astronomical Society, 2013, 430, 403-415.

An exoplanet's response to anisotropic stellar mass loss during birth and death. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2416-2430.
4.4

Multiplanet destabilization and escape in post-main-sequence systems. Monthly Notices of the Royal
Astronomical Society, 2013, 430, 3383-3396.
$4.4 \quad 76$

Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2515-2521.

99 White dwarf planets. EPJ Web of Conferences, 2013, 47, 06008.

Traditional formation scenarios fail to explain 4:3 mean motion resonances. Monthly Notices of the Royal Astronomical Society, 2012, 426, 187-202.

101 Identifying non-resonant <i>Kepler</i> planetary systems. Monthly Notices of the Royal Astronomical
3.3

Planetâ $\epsilon^{\prime \prime}$ planet scattering alone cannot explain the free-floating planet population. Monthly Notices
102 of the Royal Astronomical Society: Letters, 2012, 421, L117-L121.
3.3

94

The Solar systemâ $€^{\mathrm{TM}}$ s post-main-sequence escape boundary. Monthly Notices of the Royal Astronomical
Society, 2012, 421, 2969-2981.

Exoplanets bouncing between binary stars. Monthly Notices of the Royal Astronomical Society, 2012, 422, 831-840.

The great escape - II. Exoplanet ejection from dying multiple-star systems. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1648-1664.

Disrupting primordial planet signatures: the close encounter of two single-planet exosystems in the Galactic disc. Monthly Notices of the Royal Astronomical Society, 2012, 425, 680-700.
4.4

The great escape: how exoplanets and smaller bodies desert dying stars. Monthly Notices of the Royal
Astronomical Society, $2011,417,2104-2123$.

117 Identifying Non-transiting Terrestrial Planets with Transit Timing Data. Proceedings of the 0.0 1
International Astronomical Union, 2008, 4, 486-489.Characterizing the Orbital Eccentricities of Transiting Extrasolar Planets with Photometric118 Characterizing the Orbital Eccentricities of Transiting Extraso
4.5 95
119 Dangers of Truncating the Disturbing Function In Small Body Solar System Dynamics. AIP Conference
Proceedings, 2007, , . 0.4 1
120 Extrasolar Planetary Dynamics with a Generaliz4.528A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ876. Celestial Mechanics and Dynamical Astronomy, 2007, 99, 197-243.Predictions for the Correlation between Giant and Terrestrial Extrasolar Planets in DynamicallyEvolved Systems. Astrophysical Journal, 2006, 645, 1509-1515.The Influence of Massive Planet Scattering on Nascent Terrestrial Planets. Astrophysical Journal,

Stability of terrestrial planets in the habitable zone of CIÂ777ÂA, HD 72659, Gl 614, 47 Uma and HD 4208.

