Dimitri Veras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1444042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The great escape: how exoplanets and smaller bodies desert dying stars. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2104-2123.	4.4	194
2	THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS. Astrophysical Journal, 2009, 707, 79-88.	4.5	180
3	Post-main-sequence planetary system evolution. Royal Society Open Science, 2016, 3, 150571.	2.4	172
4	Formation of planetary debris discs around white dwarfs – I. Tidal disruption of an extremely eccentric asteroid. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2244-2255.	4.4	152
5	Simulations of two-planet systems through all phases of stellar evolution: implications for the instability boundary and white dwarf pollution. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1686-1708.	4.4	151
6	Outward migration of extrasolar planets to large orbital radii. Monthly Notices of the Royal Astronomical Society, 2004, 347, 613-624.	4.4	135
7	A planetesimal orbiting within the debris disc around a white dwarf star. Science, 2019, 364, 66-69.	12.6	131
8	FORMATION, SURVIVAL, AND DETECTABILITY OF PLANETS BEYOND 100 AU. Astrophysical Journal, 2009, 696, 1600-1611.	4.5	130
9	Long-term evolution of three-planet systems to the post-main sequence and beyond. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1404-1419.	4.4	124
10	Debris froms giant impacts between planetary embryos at large orbital radii. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3757-3777.	4.4	118
11	HIGH-SPEED PHOTOMETRY OF THE DISINTEGRATING PLANETESIMALS AT WD1145+017: EVIDENCE FOR RAPID DYNAMICAL EVOLUTION. Astrophysical Journal Letters, 2016, 818, L7.	8.3	107
12	Doppler imaging of the planetary debris disc at the white dwarf SDSSÂJ122859.93+104032.9. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4467-4478.	4.4	102
13	Characterizing the Orbital Eccentricities of Transiting Extrasolar Planets with Photometric Observations. Astrophysical Journal, 2008, 678, 1407-1418.	4.5	95
14	Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3942-3967.	4.4	95
15	Planet–planet scattering alone cannot explain the free-floating planet population. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 421, L117-L121.	3.3	94
16	Detectable close-in planets around white dwarfs through late unpacking. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1049-1058.	4.4	92
17	PLANET-PLANET SCATTERING LEADS TO TIGHTLY PACKED PLANETARY SYSTEMS. Astrophysical Journal, 2009, 696, L98-L101.	4.5	91
18	Formation of planetary debris discs around white dwarfs – II. Shrinking extremely eccentric collisionless rings. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3453-3459.	4.4	91

#	Article	IF	CITATIONS
19	Unstable low-mass planetary systems as drivers of white dwarf pollution. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3939-3955.	4.4	86
20	THE CALIFORNIA PLANET SURVEY. III. A POSSIBLE 2:1 RESONANCE IN THE EXOPLANETARY TRIPLE SYSTEM HD 37124. Astrophysical Journal, 2011, 730, 93.	4.5	85
21	Implications of the interstellar object 11/'Oumuamua for planetary dynamics and planetesimal formation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3031-3038.	4.4	82
22	The great escape - II. Exoplanet ejection from dying multiple-star systems. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1648-1664.	4.4	80
23	Liberating exomoons in white dwarf planetary systems. Monthly Notices of the Royal Astronomical Society, 2016, 457, 217-231.	4.4	80
24	The dynamics of two massive planets on inclined orbits. Icarus, 2004, 172, 349-371.	2.5	79
25	An exoplanet's response to anisotropic stellar mass loss during birth and death. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2416-2430.	4.4	79
26	Explaining the variability of WD 1145+017 with simulations of asteroid tidal disruption. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1008-1022.	4.4	77
27	Multiplanet destabilization and escape in post-main-sequence systems. Monthly Notices of the Royal Astronomical Society, 2013, 430, 3383-3396.	4.4	76
28	The great escape – III. Placing post-main-sequence evolution of planetary and binary systems in a Galactic context. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1127-1140.	4.4	76
29	A remnant planetary core in the hot-Neptune desert. Nature, 2020, 583, 39-42.	27.8	73
30	Hydrogen delivery onto white dwarfs from remnant exo-Oort cloud comets. Monthly Notices of the Royal Astronomical Society, 2014, 445, 4175-4185.	4.4	71
31	The Solar system's post-main-sequence escape boundary. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2969-2981.	4.4	70
32	Deposition of steeply infalling debris around white dwarf stars. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1575-1593.	4.4	67
33	Exoplanets beyond the Solar neighbourhood: Galactic tidal perturbations. Monthly Notices of the Royal Astronomical Society, 2013, 430, 403-415.	4.4	66
34	Stability of terrestrial planets in the habitable zone of GlÂ777ÂA, HD 72659, Gl 614, 47 Uma and HD 4208. Astronomy and Astrophysics, 2004, 426, 353-365.	5.1	65
35	SECULAR ORBITAL DYNAMICS OF HIERARCHICAL TWO-PLANET SYSTEMS. Astrophysical Journal, 2010, 715, 803-822.	4.5	65
36	The fate of exomoons in white dwarf planetary systems. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2557-2564.	4.4	65

#	Article	IF	CITATIONS
37	Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2515-2521.	4.4	62
38	A wide binary trigger for white dwarf pollution. Monthly Notices of the Royal Astronomical Society, 2015, 454, 53-63.	4.4	62
39	Post-main-sequence debris from rotation-induced YORP break-up of small bodies. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2794-2799.	4.4	59
40	The orbital evolution of asteroids, pebbles and planets from giant branch stellar radiation and winds. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2814-2834.	4.4	58
41	The fates of Solar system analogues with one additional distant planet. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2958-2971.	4.4	57
42	The Influence of Massive Planet Scattering on Nascent Terrestrial Planets. Astrophysical Journal, 2005, 620, L111-L114.	4.5	56
43	Predictions for the Correlation between Giant and Terrestrial Extrasolar Planets in Dynamically Evolved Systems. Astrophysical Journal, 2006, 645, 1509-1515.	4.5	56
44	Eight billion asteroids in the Oort cloud. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2059-2064.	4.4	52
45	The formation of the solar system. Physica Scripta, 2015, 90, 068001.	2.5	51
46	Mass and eccentricity constraints on the planetary debris orbiting the white dwarf WD 1145+017. Monthly Notices of the Royal Astronomical Society, 2017, 464, 321-328.	4.4	51
47	QUANTIFYING THE CHALLENGES OF DETECTING UNSEEN PLANETARY COMPANIONS WITH TRANSIT TIMING VARIATIONS. Astrophysical Journal, 2011, 727, 74.	4.5	50
48	Linking long-term planetary <i>N</i> -body simulations with periodic orbits: application to white dwarf pollution. Monthly Notices of the Royal Astronomical Society, 2016, 463, 4108-4120.	4.4	50
49	Identifying non-resonant <i>Kepler</i> planetary systems. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 420, L23-L27.	3.3	49
50	Traditional formation scenarios fail to explain 4:3 mean motion resonances. Monthly Notices of the Royal Astronomical Society, 2012, 426, 187-202.	4.4	48
51	A simple scaling for the minimum instability time-scale of two widely spaced planets. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 434, L11-L15.	3.3	48
52	A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876. Celestial Mechanics and Dynamical Astronomy, 2007, 99, 197-243.	1.4	43
53	A THIRD GIANT PLANET ORBITING HIP 14810. Astrophysical Journal, 2009, 699, L97-L101.	4.5	42
54	Weighing in on the masses of retired A stars with asteroseismology: K2 observations of the exoplanet-host star HD 212771. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1360-1368.	4.4	42

#	Article	IF	CITATIONS
55	TRANSIT TIMING VARIATIONS FOR INCLINED AND RETROGRADE EXOPLANETARY SYSTEMS. Astrophysical Journal Letters, 2010, 712, L86-L92.	8.3	41
56	Disrupting primordial planet signatures: the close encounter of two single-planet exosystems in the Galactic disc. Monthly Notices of the Royal Astronomical Society, 2012, 425, 680-700.	4.4	39
57	Planetary orbital equations in externally-perturbed systems: position and velocity-dependent forces. Celestial Mechanics and Dynamical Astronomy, 2013, 115, 123-141.	1.4	39
58	Dynamical mass and multiplicity constraints on co-orbital bodies around stars. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1413-1420.	4.4	39
59	A Jovian analogue orbiting a white dwarf star. Nature, 2021, 598, 272-275.	27.8	38
60	One of the closest exoplanet pairs to the 3:2 mean motion resonance: K2-19b and c. Astronomy and Astrophysics, 2015, 582, A33.	5.1	37
61	Interstellar Object 'Oumuamua as an Extinct Fragment of an Ejected Cometary Planetesimal. Astrophysical Journal Letters, 2018, 856, L7.	8.3	36
62	SECULAR EVOLUTION OF HD 12661: A SYSTEM CAUGHT AT AN UNLIKELY TIME. Astrophysical Journal, 2009, 690, L1-L4.	4.5	35
63	Infrared Variability of Two Dusty White Dwarfs. Astrophysical Journal, 2018, 866, 108.	4.5	35
64	The critical binary star separation for a planetary system origin of white dwarf pollution. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2871-2880.	4.4	35
65	The Long-Term Dynamical Evolution of Planetary Systems. , 2014, , .		35
66	Exoplanets bouncing between binary stars. Monthly Notices of the Royal Astronomical Society, 2012, 422, 831-840.	4.4	34
67	Sublimation-induced orbital perturbations of extrasolar active asteroids and comets: application to white dwarf systems. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1945-1957.	4.4	34
68	The unstable fate of the planet orbiting the A star in the HD 131399 triple stellar system. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1499-1504.	4.4	30
69	Speeding past planets? Asteroids radiatively propelled by giant branch Yarkovsky effects. Monthly Notices of the Royal Astronomical Society, 2019, 485, 708-724.	4.4	30
70	Eclipse, transit and occultation geometry of planetary systems at exo-syzygy. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2672-2683.	4.4	29
71	Extrasolar Planetary Dynamics with a Generalized Planar Laplaceâ€Lagrange Secular Theory. Astrophysical Journal, 2007, 661, 1311-1322.	4.5	28
72	TESS Asteroseismology of the Known Red-giant Host Stars HD 212771 and HD 203949. Astrophysical Journal, 2019, 885, 31.	4.5	28

#	Article	IF	CITATIONS
73	Embedding planetesimals into white dwarf discs from large distances. Monthly Notices of the Royal Astronomical Society, 2019, 489, 168-175.	4.4	27
74	Post-main-sequence debris from rotation-induced YORP break-up of small bodies – II. Multiple fissions, internal strengths, and binary production. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2437-2445.	4.4	27
75	Prospects for detecting decreasing exoplanet frequency with main-sequence age using <i>PLATO</i> . Monthly Notices of the Royal Astronomical Society, 2015, 453, 67-72.	4.4	26
76	Tidal circularization of gaseous planets orbiting white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2941-2953.	4.4	25
77	How Jupiters Save or Destroy Inner Neptunes around Evolved Stars. Astrophysical Journal Letters, 2020, 898, L23.	8.3	24
78	Relating binary-star planetary systems to central configurations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3368-3375.	4.4	23
79	Binary star influence on post-main-sequence multi-planet stability. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2053-2059.	4.4	22
80	Fast spectrophotometry of WD 1145+017. Monthly Notices of the Royal Astronomical Society, 2018, 481, 703-714.	4.4	22
81	A white dwarf accreting planetary material determined from X-ray observations. Nature, 2022, 602, 219-222.	27.8	22
82	The detection of dust around NNÂSer. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4518-4526.	4.4	21
83	Effects of non-Kozai mutual inclinations on two-planet system stability through all phases of stellar evolution. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2180-2188.	4.4	21
84	Orbital relaxation and excitation of planets tidally interacting with white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3831-3848.	4.4	21
85	Horizontal spreading of planetary debris accreted by white dwarfs. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1646-1667.	4.4	21
86	Chaotic Rotation and Evolution of Asteroids and Small Planets in High-eccentricity Orbits around White Dwarfs. Astrophysical Journal, 2019, 886, 127.	4.5	20
87	Constraining the origin of the planetary debris surrounding ZTF J0139+5245 through rotational fission of a triaxial asteroid. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5291-5296.	4.4	20
88	Driving white dwarf metal pollution through unstable eccentric periodic orbits. Astronomy and Astrophysics, 2019, 629, A126.	5.1	18
89	The dynamical history of the evaporating or disrupted ice giant planet around white dwarf WDÂJ0914+1914. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6059-6066.	4.4	18
90	The lifetimes of planetary debris discs around white dwarfs. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2292-2308.	4.4	17

#	Article	IF	CITATIONS
91	Survivability of radio-loud planetary cores orbiting white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 488, 153-163.	4.4	16
92	White dwarfs with planetary remnants in the era of <i>Gaia</i> – I. Six emission line systems. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2707-2726.	4.4	15
93	A simple bound for the variation at closest approach of a small body and star due to general relativity. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 442, L71-L75.	3.3	14
94	TESS Asteroseismic Analysis of the Known Exoplanet Host Star HD 222076. Astrophysical Journal, 2020, 896, 65.	4.5	14
95	Formation of eccentric gas discs from sublimating or partially disrupted asteroids orbiting white dwarfs. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 505, L21-L25.	3.3	13
96	Linking the formation and fate of exo-Kuiper belts within Solar system analogues. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5062-5078.	4.4	12
97	Constraining planet formation around 6–8 M⊙ stars. Monthly Notices of the Royal Astronomical Society, 2020, 493, 765-775.	4.4	12
98	On the role of resonances in polluting white dwarfs by asteroids. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3375-3386.	4.4	12
99	The entry geometry and velocity of planetary debris into the Roche sphere of a white dwarf. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1148-1164.	4.4	12
100	Significant interstellar object production by close stellar flybys. Astronomy and Astrophysics, 2021, 651, A38.	5.1	12
101	DebrisWatch I: A survey of faint geosynchronous debris. Advances in Space Research, 2021, 67, 360-370.	2.6	11
102	The white dwarf planet WD J0914+1914Âb: barricading potential rocky pollutants?. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4692-4699.	4.4	9
103	Dynamical and Biological Panspermia Constraints Within Multiplanet Exosystems. Astrobiology, 2018, 18, 1106-1122.	3.0	8
104	The grain size survival threshold in one-planet post-main-sequence exoplanetary systems. Astronomy and Astrophysics, 2020, 637, A14.	5.1	8
105	Explicit evolution relations with orbital elements for eccentric, inclined, elliptic and hyperbolic restricted few-body problems. Celestial Mechanics and Dynamical Astronomy, 2014, 118, 315-353.	1.4	7
106	A Gap in the Mass Distribution for Warm Neptune and Terrestrial Planets. Astrophysical Journal Letters, 2019, 880, L1.	8.3	7
107	White dwarf planetary debris dependence on physical structure distributions within asteroid belts. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4031-4047.	4.4	7
108	Orbit decay of 2–100 au planetary remnants around white dwarfs with no gravitational assistance from planets. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3379-3388.	4.4	7

#	Article	IF	CITATIONS
109	NGTS-12b: A sub-Saturn mass transiting exoplanet in a 7.53 day orbit. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3139-3148.	4.4	6
110	Generating metal-polluting debris in white dwarf planetary systems from small-impact crater ejecta. Monthly Notices of the Royal Astronomical Society, 2020, 494, 442-457.	4.4	6
111	Rapid destruction of planetary debris around white dwarfs through aeolian erosion. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5176-5184.	4.4	6
112	The post-main-sequence fate of the HR 8799 planetary system. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1557-1566.	4.4	6
113	Necroplanetology: Simulating the Tidal Disruption of Differentiated Planetary Material Orbiting WD 1145+017. Astrophysical Journal, 2020, 893, 166.	4.5	5
114	Birth cluster simulations of planetary systems with multiple super-Earths: initial conditions for white dwarf pollution drivers. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2460-2473.	4.4	5
115	Short-term stability of particles in the WD J0914+1914 white dwarf planetary system. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5171-5181.	4.4	4
116	White dwarf planets. EPJ Web of Conferences, 2013, 47, 06008.	0.3	3
117	The pedagogical representation of mass functions with LEGO and their origin. European Journal of Physics, 2021, 42, 035605.	0.6	3
118	Mathematical encoding within multiresonant planetary systems as SETI beacons. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4945-4950.	4.4	3
119	Spin–Orbit Resonances of High-eccentricity Asteroids: Regular, Switching, and Jumping. Planetary Science Journal, 2021, 2, 108.	3.6	2
120	Gigayear-timescale Destruction of High-eccentricity Asteroids by Spin and Why 2006 HY51 Has Been Spared. Astrophysical Journal, 2020, 899, 103.	4.5	2
121	Velocity-imaging the rapidly precessing planetary disc around the white dwarf HE 1349–2305 using Doppler tomography. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5657-5670.	4.4	2
122	Chaos over Order: Mapping 3D Rotation of Triaxial Asteroids and Minor Planets. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	2
123	Dangers of Truncating the Disturbing Function In Small Body Solar System Dynamics. AIP Conference Proceedings, 2007, , .	0.4	1
124	Identifying Non-transiting Terrestrial Planets with Transit Timing Data. Proceedings of the International Astronomical Union, 2008, 4, 486-489.	0.0	1
125	Explicit relations and criteria for eclipses, transits, and occultations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3919-3949.	4.4	1
126	Creating the first interstellar interloper. Nature Astronomy, 2020, 4, 835-836.	10.1	0

#	Article	IF	CITATIONS
127	Planetary magnetosphere evolution around post-main-sequence stars. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1697-1703.	4.4	0