Christophe M Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1443950/publications.pdf

Version: 2024-02-01

71004 58552 7,567 103 43 86 citations h-index g-index papers 119 119 119 5772 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources. Angewandte Chemie - International Edition, 2022, 61, e202113443.	7.2	13
2	Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources. Angewandte Chemie, 2022, 134, .	1.6	1
3	2,5-Furandicarboxylic Acid: An Intriguing Precursor for Monomer and Polymer Synthesis. Molecules, 2022, 27, 4071.	1.7	12
4	Collective radical oligomerisation induced by an STM tip on a silicon surface. Nanoscale, 2021, 13, 349-354.	2.8	7
5	Multicatalysis from renewable resources: a direct route to furan-based polyesters. Green Chemistry, 2021, 23, 6931-6935.	4.6	17
6	Production and Polymerization of Biobased Acrylates and Analogs. Macromolecular Rapid Communications, 2021, 42, e2000530.	2.0	35
7	Multicatalytic Transformation of (Meth)acrylic Acids: a Oneâ€Pot Approach to Biobased Poly(meth)acrylates. Angewandte Chemie - International Edition, 2021, 60, 19374-19382.	7.2	22
8	Multicatalytic Transformation of (Meth)acrylic Acids: a Oneâ€Pot Approach to Biobased Poly(meth)acrylates. Angewandte Chemie, 2021, 133, 19523-19531.	1.6	4
9	Access to Highly Stereodefined 1,4- <i>cis</i> -Polydienes by a [Ni/Mg] Orthogonal Tandem Catalytic Polymerization. Journal of the American Chemical Society, 2021, 143, 13401-13407.	6.6	4
10	Controlling polymer stereochemistry in ring-opening polymerization: a decade of advances shaping the future of biodegradable polyesters. Chemical Society Reviews, 2021, 50, 13587-13608.	18.7	62
11	Incorporation of Ru(II) Polypyridyl Complexes into Nanomaterials for Cancer Therapy and Diagnosis. Advanced Materials, 2020, 32, e2003294.	11.1	45
12	Encapsulation of a Ru(II) Polypyridyl Complex into Polylactide Nanoparticles for Antimicrobial Photodynamic Therapy. Pharmaceutics, 2020, 12, 961.	2.0	19
13	Catalyst Design for Alkene Epoxidation by Molecular Analogues of Heterogeneous Titanium-Silicalite Catalysts. ACS Catalysis, 2020, 10, 4737-4750.	5.5	45
14	Ruthenium-initiated polymerization of lactide: a route to remarkable cellular uptake for photodynamic therapy of cancer. Chemical Science, 2020, 11, 2657-2663.	3.7	37
15	Single-site cobalt and zinc catalysts for the ring-opening polymerization of lactide. European Polymer Journal, 2019, 120, 109208.	2.6	16
16	Enhancing intergranular conductivity in polycrystalline semiconductor assembly via polythiophene use. Materials Chemistry and Physics, 2019, 232, 400-408.	2.0	2
17	Stereoselective Ring-Opening (Co)polymerization of \hat{l}^2 -Butyrolactone and $\hat{l}\mu$ -Decalactone Using an Yttrium Bis(phenolate) Catalytic System. Frontiers in Chemistry, 2019, 7, 301.	1.8	10
18	Polymerization of rac â€Lactide Using Achiral Iron Complexes: Access to Thermally Stable Stereocomplexes. Angewandte Chemie, 2019, 131, 12715-12719.	1.6	7

#	Article	IF	CITATIONS
19	Polymerization of Cyclic Carbamates: A Practical Route to Aliphatic Polyurethanes. Macromolecules, 2019, 52, 2719-2724.	2.2	26
20	Polymerization of rac ‣actide Using Achiral Iron Complexes: Access to Thermally Stable Stereocomplexes. Angewandte Chemie - International Edition, 2019, 58, 12585-12589.	7.2	47
21	Aluminumâ€Catalyzed Oneâ€Pot Synthesis of Polyesterâ€ <i>b</i> â€Polypeptide Block Copolymers by Ringâ€Opening Polymerization. Macromolecular Chemistry and Physics, 2019, 220, 1900040.	1.1	5
22	Polymer encapsulation of ruthenium complexes for biological and medicinal applications. Nature Reviews Chemistry, 2019, 3, 261-282.	13.8	119
23	2nd PSL Chemical Biology Symposium (2019): At the Crossroads of Chemistry and Biology. ChemBioChem, 2019, 20, 968-973.	1.3	O
24	The development and numerical simulation of a plasma microreactor dedicated to chemical synthesis. Green Processing and Synthesis, 2017, 6, .	1.3	7
25	Mechanistic Aspects of the Polymerization of Lactide Using a Highly Efficient Aluminum(III) Catalytic System. Journal of the American Chemical Society, 2017, 139, 6217-6225.	6.6	85
26	Realâ€Time Control of the Enantioselectivity of a Supramolecular Catalyst Allows Selecting the Configuration of Consecutively Formed Stereogenic Centers. Angewandte Chemie - International Edition, 2017, 56, 14016-14019.	7.2	40
27	Realâ€Time Control of the Enantioselectivity of a Supramolecular Catalyst Allows Selecting the Configuration of Consecutively Formed Stereogenic Centers. Angewandte Chemie, 2017, 129, 14204-14207.	1.6	21
28	Transition from smectic nanofibers to smectic vesicles in the self-assemblies of PEG-b-liquid crystal polycarbonates. Polymer Chemistry, 2017, 8, 4776-4780.	1.9	21
29	Design and synthesis of biobased epoxy thermosets from biorenewable resources. Comptes Rendus Chimie, 2017, 20, 1006-1016.	0.2	57
30	Facile and efficient chemical functionalization of aliphatic polyesters by cross metathesis. Polymer Chemistry, 2016, 7, 3700-3704.	1.9	34
31	Microstructurally controlled polymers of rac-lactide by lithium complexes. Comptes Rendus Chimie, 2016, 19, 167-172.	0.2	8
32	Synthesis of heterotactic PLA from rac-lactide using hetero-bimetallic Mg/Zn–Li systems. Journal of Organometallic Chemistry, 2015, 796, 47-52.	0.8	24
33	Tandem catalysis: a new approach to polypeptides and cyclic carbonates. Chemical Communications, 2014, 50, 13773-13776.	2.2	20
34	Zinc and cobalt complexes based on tripodal ligands: synthesis, structure and reactivity toward lactide. Dalton Transactions, 2014, 43, 4550.	1.6	42
35	Facile and Efficient Synthesis of Cyclic Anhydrides from Dicarboxylic Acids. ACS Catalysis, 2014, 4, 3586-3589.	5.5	36
36	Sequence-Controlled Ring-Opening Polymerization: Synthesis of New Polyester Structures. ACS Symposium Series, 2014, , 349-368.	0.5	4

#	Article	IF	CITATIONS
37	Tandem catalysis: a new approach to polymers. Chemical Society Reviews, 2013, 42, 9392.	18.7	94
38	Polymerization of cyclic esters using N-heterocyclic carbene carboxylate catalysts. Polymer Chemistry, 2013, 4, 2414.	1.9	43
39	A joint experimental/theoretical investigation of the MMA polymerization initiated by yttrium phenoxyamine complexes. Dalton Transactions, 2013, 42, 9226.	1.6	4
40	Yttrium catalysts for syndioselective \hat{l}^2 -butyrolactone polymerization: on the origin of ligand-induced stereoselectivity. Polymer Chemistry, 2013, 4, 360-367.	1.9	53
41	Replacing Tin in Lactide Polymerization: Design of Highly Active Germaniumâ€Based Catalysts. Angewandte Chemie - International Edition, 2013, 52, 13584-13587.	7.2	36
42	Supported neodymium catalysts for MMA polymerization: on the origin of surface-induced stereoselectivity. Polymer Chemistry, 2012, 3, 1730-1739.	1.9	18
43	Synthesis of biodegradable polymers from renewable resources. Polymer Chemistry, 2012, 3, 836-851.	1.9	389
44	Encapsulation and controlled release of l-leuprolide from poly (\hat{l}^2 -hydroxyalkanoate)s: impact of microstructure and chemical functionalities. New Journal of Chemistry, 2011, 35, 876.	1.4	14
45	Polymerization of Racemic \hat{l}^2 -Butyrolactone Using Gold Catalysts: A Simple Access to Biodegradable Polymers. Organometallics, 2011, 30, 2650-2653.	1.1	39
46	Metalâ€Catalyzed Synthesis of Alternating Copolymers. Macromolecular Rapid Communications, 2011, 32, 169-185.	2.0	106
47	Supported Neodymium Catalysts for Isoprene and <i>rac</i> àâ€Î²â€Butyrolactone Polymerization: Modulation of Reactivity by Controlled Grafting. Macromolecular Rapid Communications, 2011, 32, 215-219.	2.0	14
48	Precision Synthesis of Biodegradable Polymers. Angewandte Chemie - International Edition, 2011, 50, 9244-9246.	7.2	91
49	Exploring Electronic versus Steric Effects in Stereoselective Ringâ€Opening Polymerization of Lactide and βâ€Butyrolactone with Aminoâ€alkoxyâ€bis(phenolate)–Yttrium Complexes. Chemistry - A European Journal, 2011, 17, 1872-1883.	1.7	193
50	Tandem synthesis of alternating polyesters from renewable resources. Nature Communications, 2011, 2, 586.	5 . 8	224
51	Direct amination of aryl halides with ammonia. Chemical Society Reviews, 2010, 39, 4130.	18.7	200
52	Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chemical Society Reviews, 2010, 39, 165-173.	18.7	763
53	Efficient synthesis of aminopyridine derivatives by copper catalyzed amination reactions. Chemical Communications, 2010, 46, 925-927.	2.2	65
54	New Dipyridylamine Ruthenium Complexes for Transfer Hydrogenation of Aryl Ketones in Water. Organometallics, 2010, 29, 1992-1995.	1.1	60

#	Article	IF	CITATIONS
55	Polymerization of racemic \hat{l}^2 -butyrolactone using supported catalysts: a simple access to isotactic polymers. Chemical Communications, 2010, 46, 1032.	2.2	80
56	Design of a well-defined, silica-supported chiral Zn scaffold for enantioselective catalysis. Dalton Transactions, 2010, 39, 3802.	1.6	16
57	Copper(II) Triflate as a Source of Triflic Acid: Effective, Green Catalysis of Hydroalkoxylation Reactions. Advanced Synthesis and Catalysis, 2009, 351, 2496-2504.	2.1	68
58	Functional syndiotactic poly(βâ€hydroxyalkanoate)s via stereoselective ringâ€opening copolymerization of <i>rac</i> â€Î²â€butyrolactone and <i>rac</i> â€Îlylâ€Î²â€butyrolactone. Journal of Polymer Science Part A, 2009, 47, 3177-3189.	, 2.5	47
59	Aluminum and Yttrium Complexes of an Unsymmetrical Mixed Fluorous Alkoxy/Phenoxy-Diimino Ligand: Synthesis, Structure, and Ring-Opening Polymerization Catalysis. Organometallics, 2009, 28, 1469-1475.	1.1	129
60	Polymerization of Enantiopure Monomers Using Syndiospecific Catalysts: A New Approach To Sequence Control in Polymer Synthesis. Journal of the American Chemical Society, 2009, 131, 16042-16044.	6.6	233
61	Syndiotactic-Enriched Poly(3-hydroxybutyrate)s via Stereoselective Ring-Opening Polymerization of Racemic \hat{l}^2 -Butyrolactone with Discrete Yttrium Catalysts. Macromolecules, 2009, 42, 987-993.	2.2	150
62	Bis(guanidinate) Alkoxide Complexes of Lanthanides: Synthesis, Structures and Use in Immortal and Stereoselective Ringâ€Opening Polymerization of Cyclic Esters. Chemistry - A European Journal, 2008, 14, 5440-5448.	1.7	158
63	Functional Elastomers <i>via</i> Sequential Selective Diene Copolymerization/Hydrophosphorylation Catalysis. Advanced Synthesis and Catalysis, 2008, 350, 431-438.	2.1	10
64	Discrete <i>versus In Situ</i> à€Generated Aluminumâ€Salen Catalysts in Enantioselective Cyanosilylation of Ketones: Role of Achiral Ligands. Advanced Synthesis and Catalysis, 2008, 350, 731-740.	2.1	48
65	Controlled radical polymerization of conjugated 1,3-dienes with methyl 1,3-butadiene-1-phosphonate. Polymer, 2008, 49, 4344-4349.	1.8	33
66	Convenient synthesis of mono- and di- \hat{l}^2 -hydroxy- \hat{l}^2 -bis(trifluoromethyl)-(di)imines from \hat{l}^2 -hydroxy- \hat{l}^2 -bis(trifluoromethyl)-ketones and (di)amines. Tetrahedron, 2008, 64, 75-83.	1.0	18
67	Highly efficient and economic synthesis of new substituted amino-bispyridyl derivatives via copper and palladium catalysis. Tetrahedron Letters, 2008, 49, 3471-3474.	0.7	40
68	Synthesis of new dipyridinylamine and dipyridinylmethane ligands and their coordination chemistry with Mg(ii) and Zn(ii). New Journal of Chemistry, 2008, 32, 2150.	1.4	28
69	Aluminum Complexes of Fluorinated Dialkoxy-Diimino Salen-like Ligands: Syntheses, Structures, and Use in Ring-Opening Polymerization of Cyclic Esters. Organometallics, 2008, 27, 5815-5825.	1.1	118
70	Zinc and enolato-magnesium complexes based on bi-, tri- and tetradentate aminophenolate ligands. New Journal of Chemistry, 2008, 32, 2279.	1.4	76
71	Controlled ring-opening polymerization of lactide by group 3 metal complexes. Pure and Applied Chemistry, 2007, 79, 2013-2030.	0.9	142
72	Aluminum and Zinc Complexes Based on an Amino-Bis(pyrazolyl) Ligand:Â Synthesis, Structures, and Use in MMA and Lactide Polymerization. Inorganic Chemistry, 2007, 46, 328-340.	1.9	110

#	Article	IF	Citations
73	Chromium Catalysts Based on Tridentate Pyrazolyl Ligands for Ethylene Oligomerization. Organometallics, 2007, 26, 4010-4014.	1.1	61
74	"Constrained Geometry―Titanium Complexes:  Exceptionally Robust Systems for Living Polymerization of Methacrylates at High Temperature and Model Studies toward Chain Transfer Polymerization with Thiols. Organometallics, 2007, 26, 187-195.	1.1	26
75	Highly Effective Polymerization of Acrylate Catalyzed by a "Constrained Geometry―Titanium Complex/B(C6F5)3System. Macromolecules, 2007, 40, 2293-2294.	2.2	7
76	Chiral Fluorous Dialkoxy-Diamino Zirconium Complexes: Synthesis and Use in Stereospecific Polymerization of 1-Hexene. Chemistry - A European Journal, 2007, 13, 923-935.	1.7	43
77	Yttrium Complexes as Catalysts for Living and Immortal Polymerization of Lactide to Highly Heterotactic PLA. Macromolecular Rapid Communications, 2007, 28, 693-697.	2.0	186
78	Magnesium complexes based on an amido-bis(pyrazolyl) ligand: Synthesis, crystal structures, and use in lactide polymerization. Polyhedron, 2007, 26, 3817-3824.	1.0	34
79	Ring-opening polymerization of 3,6-dimethyl-2,5-morpholinedione with discrete amino-alkoxy-bis(phenolate) yttrium initiators: mechanistic insights. Chemical Communications, 2006, , 4509.	2.2	22
80	Copolymerization of cyclohexene oxide and carbon dioxide using (salen)Co(iii) complexes: synthesis and characterization of syndiotactic poly(cyclohexene carbonate). Dalton Transactions, 2006, , 237-249.	1.6	133
81	Nickel Complexes Based on Tridentate Pyrazolyl Ligands for Highly Efficient Dimerization of Ethylene to 1-Butene. Organometallics, 2006, 25, 1213-1216.	1.1	132
82	Ring-Opening Polymerization of Lactide with Group 3 Metal Complexes Supported by Dianionic Alkoxy-Amino-Bisphenolate Ligands: Combining High Activity, Productivity, and Selectivity. Chemistry - A European Journal, 2006, 12, 169-179.	1.7	388
83	Highly Active, Productive, and Syndiospecific Yttrium Initiators for the Polymerization of Racemic β-Butyrolactone. Angewandte Chemie - International Edition, 2006, 45, 2782-2784.	7.2	265
84	Bis[bis(oxazolinato)] Complexes of Yttrium and Lanthanum: Molecular Structure and Use in Polymerization ofdl-Lactide anddl-Î ² -Butyrolactone. European Journal of Inorganic Chemistry, 2006, 2006, 3652-3658.	1.0	61
85	Mixed Aluminum-Magnesium-Rare Earth Allyl Catalysts for Controlled Isoprene Polymerization: Modulation of Stereocontrol. Macromolecular Rapid Communications, 2006, 27, 338-343.	2.0	78
86	Efficient and Selective Rhodium-Catalyzed Hydrophosphorylation of Dienes. Advanced Synthesis and Catalysis, 2006, 348, 1093-1100.	2.1	20
87	Aqueous oxidation of alcohols catalyzed by artificial metalloenzymes based on the biotin–avidin technology. Journal of Organometallic Chemistry, 2005, 690, 4488-4491.	0.8	42
88	Design of artificial metalloenzymes. Applied Organometallic Chemistry, 2005, 19, 35-39.	1.7	20
89	Microstructurally Controlled Polyisoprene or Polystyrene Diblock Copolymers ofrac-Lactide. Macromolecular Rapid Communications, 2005, 26, 1145-1150.	2.0	9
90	Artificial Metalloenzymes: Proteins as Hosts for Enantioselective Catalysis. ChemInform, 2005, 36, no.	0.1	0

#	Article	IF	CITATIONS
91	Artificial metalloenzymes: proteins as hosts for enantioselective catalysis. Chemical Society Reviews, 2005, 34, 337.	18.7	241
92	An Aluminum Complex Supported by a Fluorous Diamino-Dialkoxide Ligand for the Highly Productive Ring-Opening Polymerization of $\hat{l}\mu$ -Caprolactone. Organometallics, 2005, 24, 6279-6282.	1.1	75
93	Cobalt-Based Complexes for the Copolymerization of Propylene Oxide and CO2: Active and Selective Catalysts for Polycarbonate Synthesis. Angewandte Chemie - International Edition, 2003, 42, 5484-5487.	7.2	370
94	Ligand effects in the rhodium-catalyzed carbonylation of methanol. Coordination Chemistry Reviews, 2003, 243, 125-142.	9.5	197
95	Specific reactivity of SH versus OH functions towards dinuclear arene ruthenium units: synthesis of cationic complexes of the type [(arene)2Ru2(SR)3]+. Polyhedron, 2003, 22, 543-548.	1.0	20
96	New Diphosphine Ligands Containing Ethyleneglycol and Amino Alcohol Spacers for the Rhodium-Catalyzed Carbonylation of Methanol. Chemistry - A European Journal, 2002, 8, 3343.	1.7	56
97	Dendritic Systems Based on Dinuclear Ruthenium or Rhodium Units Generating Peripheral Catalytic Sites. Chemistry - A European Journal, 2002, 8, 4377-4382.	1.7	21
98	New benzotriazole derivatives as multifunctional ligands. Journal of Organometallic Chemistry, 2002, 658, 251-258.	0.8	11
99	[CoI2(C6H4N3CH2CO2C4H2SCO2CH2C6H4N3)], a coordination polymer containing the thiophene-2,5-di(carboxylatomethylenebenzotriazole) bridging ligand: synthesis, structure, redox properties. Inorganic Chemistry Communication, 2002, 5, 264-266.	1.8	3
100	Synthesis and structure of [(C5H5)Fe(C5H4PS2OCH2C6H4N3)]â^', a new phosphonodithioate derivative, and its coordination chemistry with rhodium(I) and nickel(II). Journal of Organometallic Chemistry, 2001, 633, 85-90.	0.8	25
101	Catalytic oxidation of alcohols into aldehydes and ketones by an osmium-copper bifunctional system using molecular oxygen. Tetrahedron Letters, 1999, 40, 3723-3726.	0.7	81
102	Fixation and spontaneous dehydrogenation of methanol on a triruthenium–iridium framework: synthesis and structure of the cluster anion [HRu3lr(CO)12(OMe)]â^. Chemical Communications, 1999, , 1959-1960.	2.2	7
103	Ambient Temperature Polymerization of Methyl Methacrylate Mediated by Ate Complexes. ChemCatChem, 0, , e202101673.	1.8	2