Violetta Shestivska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1443899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Reduction of Carbon Dioxide on 3D Printed Electrodes. ChemElectroChem, 2021, 8, 2137-2149.	1.7	20
2	Copper electroplating of 3D printed composite electrodes. Journal of Electroanalytical Chemistry, 2020, 858, 113763.	1.9	40
3	The development of a fully integrated 3D printed electrochemical platform and its application to investigate the chemical reaction between carbon dioxide and hydrazine. Electrochimica Acta, 2020, 360, 136984.	2.6	22
4	Selected ion flow tube mass spectrometry analyses of isobaric compounds methanol and hydrazine in humid air. Rapid Communications in Mass Spectrometry, 2020, 34, e8744.	0.7	3
5	14N NQR Quantification of Sodium Nitrite and Urotropin Using Singular Spectrum Analysis (SSA) for Data Filtering. Applied Magnetic Resonance, 2020, 51, 449-460.	0.6	2
6	Prebiotic synthesis at impact craters: the role of Fe-clays and iron meteorites. Chemical Communications, 2019, 55, 10563-10566.	2.2	13
7	Time-integrated thermal desorption for quantitative SIFT-MS analyses of atmospheric monoterpenes. Analytical and Bioanalytical Chemistry, 2019, 411, 2997-3007.	1.9	6
8	Evaluation of lipid peroxidation by the analysis of volatile aldehydes in the headspace of synthetic membranes using selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1617-1628.	0.7	11
9	Formation of nucleobases in a Miller–Urey reducing atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4306-4311.	3.3	120
10	Evaluation of peroxidative stress of cancer cells <i>in vitro</i> by realâ€time quantification of volatile aldehydes in culture headspace. Rapid Communications in Mass Spectrometry, 2017, 31, 1344-1352.	0.7	7
11	Spectroscopic investigations of high-energy-density plasma transformations in a simulated early reducing atmosphere containing methane, nitrogen and water. Physical Chemistry Chemical Physics, 2016, 18, 27317-27325.	1.3	11
12	Direct detection and quantification of malondialdehyde vapour in humid air using selected ion flow tube mass spectrometry supported by gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 1069-1079.	0.7	17
13	Correction for Ferus et al., High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E339-E339.	3.3	0
14	Quantitative analysis of volatile metabolites released <i>in vitro</i> by bacteria of the genus <i>Stenotrophomonas</i> for identification of breath biomarkers of respiratory infection in cystic fibrosis Journal of Breath Research, 2015, 9, 027104.	1.5	39
15	High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proceedings of the United States of America, 2015, 112, 657-662.	3.3	159
16	Exhaled breath concentrations of acetic acid vapour in gastro-esophageal reflux disease. Journal of Breath Research, 2014, 8, 037109.	1.5	40
17	High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formation. Journal of Physical Chemistry A, 2014, 118, 719-736.	1.1	73
18	Real-Time Quantification of Traces of Biogenic Volatile Selenium Compounds in Humid Air by Selected	3.2	7

#	Article	IF	CITATIONS
19	Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa. Journal of Applied Microbiology, 2012, 113, 701-713.	1.4	81
20	Determination of the Deuterium Abundances in Water from 156 to 10,000Âppm by SIFT-MS. Journal of the American Society for Mass Spectrometry, 2011, 22, 179-186.	1.2	7
21	Quantification of methyl thiocyanate in the headspace of <i>Pseudomonas aeruginosa</i> cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 2459-2467.	0.7	80
22	Determination of Plant Thiols by Liquid Chromatography Coupled with Coulometric and Amperometric Detection in Lettuce Treated by Lead(II) Ions. Electroanalysis, 2010, 22, 1248-1259.	1.5	42
23	Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions. Sensors, 2009, 9, 5040-5058.	2.1	52
24	Determination of content of metallothionein and low molecular mass stress peptides in transgenic tobacco plants. Plant Cell, Tissue and Organ Culture, 2008, 94, 291-298.	1.2	40
25	Electrochemical and spectrometric study of antioxidant activity of pomiferin, isopomiferin, osajin and catalnoside Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 127-133	1.4	28