
Martin Fenker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1443579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corrosion protection with hard coatings on steel: Past approaches and current research efforts. Surface and Coatings Technology, 2014, 257, 182-205.	4.8	117
2	Ultra-Thin Aluminium Oxide Films Deposited by Plasma-Enhanced Atomic Layer Deposition for Corrosion Protection. Journal of the Electrochemical Society, 2011, 158, C132.	2.9	100
3	Improvement of the corrosion resistance of hard wear resistant coatings by intermediate plasma etching or multilayered structure. Surface and Coatings Technology, 2002, 150, 101-106.	4.8	66
4	Sealing of Hard CrN and DLC Coatings with Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2014, 6, 1893-1901.	8.0	61
5	Corrosion Protection of Steel with Oxide Nanolaminates Grown by Atomic Layer Deposition. Journal of the Electrochemical Society, 2011, 158, C369.	2.9	58
6	Corrosion behaviour of decorative and wear resistant coatings on steel deposited by reactive magnetron sputtering $\hat{a} \in $ Tests and improvements. Thin Solid Films, 2006, 515, 27-32.	1.8	55
7	Deposition of NbN thin films onto high-speed steel using reactive magnetron sputtering for corrosion protective applications. Surface and Coatings Technology, 2003, 163-164, 169-175.	4.8	47
8	Some properties of (Ti,Mg)N thin films deposited by reactive dc magnetron sputtering. Surface and Coatings Technology, 2005, 200, 227-231.	4.8	39
9	Investigation of Niobium oxynitride thin films deposited by reactive magnetron sputtering. Surface and Coatings Technology, 2006, 201, 4152-4157.	4.8	35
10	Study of CrNx and NbC interlayers for HFCVD diamond deposition onto WC–Co substrates. Diamond and Related Materials, 2013, 33, 38-44.	3.9	28
11	Three-dimensional thickness and property distribution of TiC films deposited by DC magnetron sputtering and HIPIMS. Surface and Coatings Technology, 2014, 250, 37-43.	4.8	26
12	Enhanced wear resistance of molybdenum nitride coatings deposited by high power impulse magnetron sputtering by using micropatterned surfaces. Surface and Coatings Technology, 2018, 333, 1-12.	4.8	26
13	Structure modification of magnetron-sputtered CrN coatings by intermediate plasma etching steps. Surface and Coatings Technology, 2000, 133-134, 176-180.	4.8	19
14	Pulsed power magnetron sputtering of a niobium target in reactive oxygen and/or nitrogen atmosphere. Surface and Coatings Technology, 2005, 200, 1356-1360.	4.8	19
15	Corrosion behaviour of MoSx-based coatings deposited onto high speed steel by magnetron sputtering. Surface and Coatings Technology, 2006, 201, 4099-4104.	4.8	19
16	Spectroellipsometric evaluation of colour and oxidation resistance of TiMgN coatings. Thin Solid Films, 2004, 455-456, 650-655.	1.8	17
17	Influence of air oxidation on the properties of decorative NbOxNy coatings prepared by reactive gas pulsing. Surface and Coatings Technology, 2008, 202, 2363-2367.	4.8	16
18	Al _{<i>x</i>} Ta _{<i>y</i>} O _{<i>z</i>} Mixture Coatings Prepared Using Atomic Layer Deposition for Corrosion Protection of Steel. Chemical Vapor Deposition, 2013, 19, 194-203.	1.3	14

Martin Fenker

#	Article	IF	CITATIONS
19	Corrosion protection of steel substrates by magnetron sputtered TiMgN hard coatings: Structure, mechanical properties and growth defect related salt spray test results. Surface and Coatings Technology, 2018, 349, 82-92.	4.8	13
20	Thermal stability, mechanical and corrosion behaviour of niobium-based coatings in the ternary system Nb–O–N. Thin Solid Films, 2011, 519, 2457-2463.	1.8	12
21	Corrosion performance of PVD-coated and anodised materials for the decorative market. Surface and Coatings Technology, 2004, 188-189, 466-472.	4.8	11
22	Evaluation of adhesion and tribological behaviour of tantalum oxynitride thin films deposited by reactive magnetron sputtering onto steel substrates. Surface and Coatings Technology, 2006, 200, 6500-6504.	4.8	10
23	Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection. Materials Chemistry and Physics, 2014, 147, 895-907.	4.0	10
24	Reduced friction on Î ³ -Mo2N coatings deposited by high power impulse magnetron sputtering on microstructured surfaces. Tribology International, 2017, 106, 41-45.	5.9	10
25	Physical and electrical properties of nitrogen-doped hydrogenated amorphous carbon films. Vacuum, 2019, 162, 8-14.	3.5	10
26	Precise control of multilayered structures of Nb–O–N thin films by the use of reactive gas pulsing process in DC magnetron sputtering. Surface and Coatings Technology, 2008, 202, 2358-2362.	4.8	9
27	Formation of Solid Lubricants during High Temperature Tribology of Silver-Doped Molybdenum Nitride Coatings Deposited by dcMS and HIPIMS. Coatings, 2021, 11, 1415.	2.6	7
28	Corrosion protection mechanisms of TiMgN hard coatings on steel. IOP Conference Series: Materials Science and Engineering, 2018, 373, 012009.	0.6	4
29	Corrosion protection of steel substrates by magnetron sputtered TiMgN hard coatings: Influence of surface morphology and Mg content on Mg release in NaCl solutions. Thin Solid Films, 2019, 688, 137430.	1.8	2
30	Abscheidung von dekorativen Schichten mittels PVD-/CVD-Verfahren. Materialwissenschaft Und Werkstofftechnik, 2002, 33, 586-590.	0.9	1
31	Structural study of the oxidation process and stability of NbOxNy coatings. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 4927-4932.	1.4	1
32	Investigations on tailoring the deposition conditions in HIPIMS by varying the pulse durations and the argon partial pressure. IOP Conference Series: Materials Science and Engineering, 2012, 39, 012002.	0.6	1
33	Application and limitations of inverted fireballs in a magnetron sputter device. Surface and Coatings Technology, 2021, 422, 127510.	4.8	1