
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1443316/publications.pdf Version: 2024-02-01

DETED FALLED

#	Article	IF	CITATIONS
1	Copper Induces Protein Aggregation, a Toxic Process Compensated by Molecular Chaperones. MBio, 2022, 13, e0325121.	4.1	38
2	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	47.7	406
3	Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coordination Chemistry Reviews, 2021, 433, 213727.	18.8	45
4	Copper Imbalance in Alzheimer's Disease and Its Link with the Amyloid Hypothesis: Towards a Combined Clinical, Chemical, and Genetic Etiology. Journal of Alzheimer's Disease, 2021, 83, 23-41.	2.6	31
5	A luminescent ATCUN peptide variant with enhanced properties for copper(II) sensing in biological media. Journal of Inorganic Biochemistry, 2021, 221, 111478.	3.5	4
6	Acrolein and Copper as Competitive Effectors of α‧ynuclein. Chemistry - A European Journal, 2020, 26, 1871-1879.	3.3	8
7	Copper-binding motifs Xxx-His or Xxx-Zzz-His (ATCUN) linked to an antimicrobial peptide: Cu-binding, antimicrobial activity and ROS production. Journal of Inorganic Biochemistry, 2020, 213, 111255.	3.5	7
8	How trimerization of CTR1 N-terminal model peptides tunes Cu-binding and redox-chemistry. Chemical Communications, 2020, 56, 12194-12197.	4.1	18
9	A terbium(iii) luminescent ATCUN-based peptide sensor for selective and reversible detection of copper(ii) in biological media. Chemical Communications, 2020, 56, 4797-4800.	4.1	18
10	The Glutathione/Metallothionein System Challenges the Design of Efficient O ₂ â€Activating Copper Complexes. Angewandte Chemie, 2020, 132, 7904-7909.	2.0	4
11	The Glutathione/Metallothionein System Challenges the Design of Efficient O ₂ â€Activating Copper Complexes. Angewandte Chemie - International Edition, 2020, 59, 7830-7835.	13.8	30
12	Reproducibility Problems of Amyloid- \hat{l}^2 Self-Assembly and How to Deal With Them. Frontiers in Chemistry, 2020, 8, 611227.	3.6	13
13	Reversible turn-on fluorescent Cu(<scp>ii</scp>) sensors: rather dream than reality?. Dalton Transactions, 2019, 48, 14233-14237.	3.3	10
14	(Bio)chemical Strategies To Modulate Amyloid-Î ² Self-Assembly. ACS Chemical Neuroscience, 2019, 10, 3366-3374.	3.5	21
15	Copper-Targeting Approaches in Alzheimer's Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorganic Chemistry, 2019, 58, 13509-13527.	4.0	61
16	Triggering Cu-coordination change in Cu(<scp>ii</scp>)-Ala-His-His by external ligands. Chemical Communications, 2019, 55, 8110-8113.	4.1	14
17	Cu(II) Binding to the N-Terminal Model Peptide of the Human Ctr2 Transporter at Lysosomal and Extracellular pH. Inorganic Chemistry, 2019, 58, 7488-7498.	4.0	5
18	Role of PTA in the prevention of Cu(amyloid-β) induced ROS formation and amyloid-β oligomerisation in the presence of Zn. Metallomics, 2019, 11, 1154-1161.	2.4	7

#	Article	IF	CITATIONS
19	Reactivity of Cu(<scp>ii</scp>)–, Zn(<scp>ii</scp>)– and Fe(<scp>ii</scp>)–thiosemicarbazone complexes with glutathione and metallothionein: from stability to dissociation to transmetallation. Metallomics, 2019, 11, 994-1004.	2.4	38
20	Switching on Endogenous Metal Binding Proteins in Parkinson's Disease. Cells, 2019, 8, 179.	4.1	24
21	Ascorbate Oxidation by Cu(Amyloid-β) Complexes: Determination of the Intrinsic Rate as a Function of Alterations in the Peptide Sequence Revealing Key Residues for Reactive Oxygen Species Production. Analytical Chemistry, 2018, 90, 5909-5915.	6.5	44
22	Measurement of Interpeptidic Cu(II) Exchange Rate Constants by Static Fluorescence Quenching of Tryptophan. Inorganic Chemistry, 2018, 57, 4791-4794.	4.0	14
23	Burning Amyloid-Î ² with a Near-Infrared Photosensitizer. CheM, 2018, 4, 663-665.	11.7	4
24	Nâ€Terminal Cuâ€Binding Motifs (Xxxâ€Zzzâ€His, Xxxâ€His) and Their Derivatives: Chemistry, Biology and Medicinal Applications. Chemistry - A European Journal, 2018, 24, 8029-8041.	3.3	99
25	Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biology, 2018, 14, 450-464.	9.0	1,411
26	Low catalytic activity of the Cu(<scp>ii</scp>)-binding motif (Xxx-Zzz-His; ATCUN) in reactive oxygen species production and inhibition by the Cu(<scp>i</scp>)-chelator BCS. Chemical Communications, 2018, 54, 11945-11948.	4.1	22
27	Cu transfer from amyloid-β _{4–16} to metallothionein-3: the role of the neurotransmitter glutamate and metallothionein-3 Zn(<scp>ii</scp>)-load states. Chemical Communications, 2018, 54, 12634-12637.	4.1	20
28	The N-terminal 14-mer model peptide of human Ctr1 can collect Cu(<scp>ii</scp>) from albumin. Implications for copper uptake by Ctr1. Metallomics, 2018, 10, 1723-1727.	2.4	37
29	Metal Binding to AÎ ² Peptides Inhibits Interaction with Cytochrome <i>c</i> : Insights from Abiological Constructs. ACS Omega, 2018, 3, 13994-14003.	3.5	5
30	Amyloid-β/Drug Interactions from Computer Simulations and Cell-Based Assays. Journal of Alzheimer's Disease, 2018, 64, S659-S672.	2.6	5
31	Mutations of Histidineâ€13 to Arginine and Arginine 5 to Glycine Are Responsible for Different Coordination Sites of Zinc(II) to Human and Murine Peptides. Chemistry - A European Journal, 2018, 24, 14233-14241.	3.3	4
32	Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coordination Chemistry Reviews, 2018, 371, 38-55.	18.8	120
33	Frontispiece: N-Terminal Cu-Binding Motifs (Xxx-Zzz-His, Xxx-His) and Their Derivatives: Chemistry, Biology and Medicinal Applications. Chemistry - A European Journal, 2018, 24, .	3.3	0
34	Identification of key structural features of the elusive Cu–Aβ complex that generates ROS in Alzheimer's disease. Chemical Science, 2017, 8, 5107-5118.	7.4	104
35	Why Is Research on Amyloid-β Failing to Give New Drugs for Alzheimer's Disease?. ACS Chemical Neuroscience, 2017, 8, 1435-1437.	3.5	201
36	Similarities and differences of copper and zinc cations binding to biologically relevant peptides studied by vibrational spectroscopies. Journal of Biological Inorganic Chemistry, 2017, 22, 581-589.	2.6	16

#	Article	IF	CITATIONS
37	Cysteine and glutathione trigger the Cu–Zn swap between Cu(<scp>ii</scp>)-amyloid-l² ₄₋₁₆ peptide and Zn ₇ -metallothionein-3. Chemical Communications, 2017, 53, 11634-11637.	4.1	24
38	Cu(II) Binding to the Peptide Ala-His-His, a Chimera of the Canonical Cu(II)-Binding Motifs Xxx-His and Xxx-Zzz-His. Inorganic Chemistry, 2017, 56, 14870-14879.	4.0	23
39	Chemistry of mammalian metallothioneins and their interaction with amyloidogenic peptides and proteins. Chemical Society Reviews, 2017, 46, 7683-7693.	38.1	57
40	Metallothionein, Copper and Alpha-Synuclein in Alpha-Synucleinopathies. Frontiers in Neuroscience, 2017, 11, 114.	2.8	52
41	Metal-Binding to Amyloid- \hat{l}^2 Peptide: Coordination, Aggregation, and Reactive Oxygen Species Production. , 2017, , 265-281.		12
42	Free Superoxide is an Intermediate in the Production of H ₂ O ₂ by Copper(I)â€Aβ Peptide and O ₂ . Angewandte Chemie, 2016, 128, 1097-1101.	2.0	18
43	Free Superoxide is an Intermediate in the Production of H ₂ O ₂ by Copper(I)â€Aβ Peptide and O ₂ . Angewandte Chemie - International Edition, 2016, 55, 1085-1089.	13.8	95
44	Is ascorbate Dr Jekyll or Mr Hyde in the Cu(Aβ) mediated oxidative stress linked to Alzheimer's disease?. Dalton Transactions, 2016, 45, 12627-12631.	3.3	32
45	How Zn can impede Cu detoxification by chelating agents in Alzheimer's disease: a proof-of-concept study. Dalton Transactions, 2016, 45, 15671-15678.	3.3	33
46	Zinc(II) Binding Site to the Amyloid-β Peptide: Insights from Spectroscopic Studies with a Wide Series of Modified Peptides. Inorganic Chemistry, 2016, 55, 10499-10509.	4.0	74
47	Impact of Cu(II) Binding on Structures and Dynamics of Aβ ₄₂ Monomer and Dimer: Molecular Dynamics Study. ACS Chemical Neuroscience, 2016, 7, 1348-1363.	3.5	62
48	Metal-catalyzed oxidation of $A\hat{l}^2$ and the resulting reorganization of Cu binding sites promote ROS production. Metallomics, 2016, 8, 1081-1089.	2.4	55
49	Coordination complexes and biomolecules: A wise wedding for catalysis upgrade. Coordination Chemistry Reviews, 2016, 308, 445-459.	18.8	58
50	A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid-β Peptides. PLoS ONE, 2016, 11, e0161209.	2.5	8
51	Copper(I/II), α/βâ€ S ynuclein and Amyloidâ€Î²: Menage à Trois?. ChemBioChem, 2015, 16, 2319-2328.	2.6	38
52	Aggregationâ€Prone Amyloidâ€Î²â‹Cu ^{II} Species Formed on the Millisecond Timescale under Mildly Acidic Conditions. ChemBioChem, 2015, 16, 1293-1297.	2.6	26
53	Combined Experimental and Simulation Studies Suggest a Revised Mode of Action of the Antiâ€Alzheimer Disease Drug NQâ€Trp. Chemistry - A European Journal, 2015, 21, 12657-12666.	3.3	20
54	Learning chemistry with multiple first-principles simulations. Molecular Simulation, 2015, 41, 780-787.	2.0	3

#	Article	IF	CITATIONS
55	Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein. Inorganic Chemistry, 2015, 54, 4744-4751.	4.0	35
56	Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chemical Reviews, 2015, 115, 3518-3563.	47.7	530
57	Copper(<scp>i</scp>) targeting in the Alzheimer's disease context: a first example using the biocompatible PTA ligand. Metallomics, 2015, 7, 1229-1232.	2.4	35
58	The Na+/K+-ATPase and the amyloid-beta peptide al̂²1–40 control the cellular distribution, abundance and activity of TRPC6 channels. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2957-2965.	4.1	5
59	Molecular structure of the NQTrp inhibitor with the Alzheimer Aβ1-28 monomer. European Journal of Medicinal Chemistry, 2015, 91, 43-50.	5.5	32
60	A Cu-amyloid β complex activating Fenton chemistry in Alzheimer's disease: Learning with multiple first-principles simulations. AIP Conference Proceedings, 2014, , .	0.4	4
61	Metal Ions and Intrinsically Disordered Proteins and Peptides: From Cu/Zn Amyloid-β to General Principles. Accounts of Chemical Research, 2014, 47, 2252-2259.	15.6	221
62	Concept for Simultaneous and Specific in Situ Monitoring of Amyloid Oligomers and Fibrils via Förster Resonance Energy Transfer. Analytical Chemistry, 2014, 86, 11877-11882.	6.5	26
63	Platinoid complexes to target monomeric disordered peptides: a forthcoming solution against amyloid diseases?. Dalton Transactions, 2014, 43, 4233.	3.3	20
64	Use of a new water-soluble Zn sensor to determine Zn affinity for the amyloid-β peptide and relevant mutants. Metallomics, 2014, 6, 1220.	2.4	36
65	Binding of transition metal ions to albumin: Sites, affinities and rates. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5444-5455.	2.4	350
66	Zn impacts Cu coordination to amyloid-β, the Alzheimer's peptide, but not the ROS production and the associated cell toxicity. Chemical Communications, 2013, 49, 1214.	4.1	58
67	Pt(ii) compounds interplay with Cu(ii) and Zn(ii) coordination to the amyloid-β peptide has metal specific consequences on deleterious processes associated to Alzheimer's disease. Chemical Communications, 2013, 49, 2130.	4.1	58
68	Cu(II) Affinity for the Alzheimer's Peptide: Tyrosine Fluorescence Studies Revisited. Analytical Chemistry, 2013, 85, 1501-1508.	6.5	148
69	Coordination of Metal Ions to β-Amyloid Peptide: Impact on Alzheimer's Disease. Modecular Medicine and Medicinal, 2013, , 127-155.	0.4	0
70	Role of Metal Ions in the Self-assembly of the Alzheimer's Amyloid-β Peptide. Inorganic Chemistry, 2013, 52, 12193-12206.	4.0	296
71	The role of metal ions in amyloid formation: general principles from model peptides. Metallomics, 2013, 5, 183.	2.4	47
72	Identifying, By First-Principles Simulations, Cu[Amyloid-β] Species Making Fenton-Type Reactions in Alzheimer's Disease. Journal of Physical Chemistry B, 2013, 117, 16455-16467.	2.6	51

#	Article	IF	CITATIONS
73	The Catalytically Active Copperâ€Amyloidâ€Beta State: Coordination Site Responsible for Reactive Oxygen Species Production. Angewandte Chemie - International Edition, 2013, 52, 11110-11113.	13.8	105
74	Copper and Heme-Mediated Abeta Toxicity: Redox Chemistry, Abeta Oxidations and Anti-ROS Compounds. Current Topics in Medicinal Chemistry, 2013, 12, 2573-2595.	2.1	56
75	A Bioinorganic View of Alzheimer's Disease: When Misplaced Metal Ions (Re)direct the Electrons to the Wrong Target. Chemistry - A European Journal, 2012, 18, 15910-15920.	3.3	84
76	Dynamics of Zn ^{II} Binding as a Key Feature in the Formation of Amyloid Fibrils by Aβ11-28. Inorganic Chemistry, 2012, 51, 701-708.	4.0	23
77	Rapid Exchange of Metal between Zn ₇ –Metallothionein-3 and Amyloid-β Peptide Promotes Amyloid-Related Structural Changes. Biochemistry, 2012, 51, 1697-1706.	2.5	68
78	Copper Coordination to Native N-Terminally Modified versus Full-Length Amyloid-β: Second-Sphere Effects Determine the Species Present at Physiological pH. Inorganic Chemistry, 2012, 51, 12988-13000.	4.0	40
79	A thienoquinoxaline and a styryl-quinoxaline as new fluorescent probes for amyloid-β fibrils. Comptes Rendus Chimie, 2012, 15, 79-85.	0.5	25
80	Methods and techniques to study the bioinorganic chemistry of metal–peptide complexes linked to neurodegenerative diseases. Coordination Chemistry Reviews, 2012, 256, 2381-2396.	18.8	77
81	Metal ions in neurodegenerative diseases. Coordination Chemistry Reviews, 2012, 256, 2127-2128.	18.8	22
82	Neurodegenerative diseases and exposure to the environmental metals Mn, Pb, and Hg. Coordination Chemistry Reviews, 2012, 256, 2147-2163.	18.8	78
83	Interference of a new cyclometallated Pt compound with Cu binding to amyloid- \hat{l}^2 peptide. Dalton Transactions, 2012, 41, 6404.	3.3	38
84	Modeling Copper Binding to the Amyloid-β Peptide at Different pH: Toward a Molecular Mechanism for Cu Reduction. Journal of Physical Chemistry B, 2012, 116, 11899-11910.	2.6	37
85	Insights into the Mechanisms of Amyloid Formation of Zn ^{II} -Ab11-28: pH-Dependent Zinc Coordination and Overall Charge as Key Parameters for Kinetics and the Structure of Zn ^{II} -Ab11-28 Aggregates. Inorganic Chemistry, 2012, 51, 7897-7902.	4.0	10
86	Inhibition of Cuâ€Amyloidâ€Î² by using Bifunctional Peptides with βâ€Sheet Breaker and Chelator Moieties. Chemistry - A European Journal, 2012, 18, 4836-4839.	3.3	29
87	Copper in Alzheimer disease: too much, too little, or misplaced?. Free Radical Biology and Medicine, 2012, 52, 747-748.	2.9	34
88	Reevaluation of Copper(I) Affinity for Amyloidâ€Ĵ² Peptides by Competition with Ferrozine—An Unusual Copper(I) Indicator. Chemistry - A European Journal, 2012, 18, 1161-1167.	3.3	73
89	Thermodynamic study of Cu2+ binding to the DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the weaker competitor glycine. Journal of Biological Inorganic Chemistry, 2012, 17, 37-47.	2.6	97
90	New Insights into the Coordination of Cu(II) by the Amyloid-B 16 Peptide from Fourier Transform IR Spectroscopy and Isotopic Labeling. Journal of Physical Chemistry B, 2011, 115, 14812-14821.	2.6	31

#	Article	IF	CITATIONS
91	pH-Dependent Cu(II) Coordination to Amyloid-Î ² Peptide: Impact of Sequence Alterations, Including the H6R and D7N Familial Mutations Inorganic Chemistry, 2011, 50, 11192-11201.	4.0	73
92	Iron(II) Binding to Amyloid-β, the Alzheimer's Peptide. Inorganic Chemistry, 2011, 50, 9024-9030.	4.0	177
93	Metals and Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-2.	2.0	10
94	Zinc(II) modulates specifically amyloid formation and structure in model peptides. Journal of Biological Inorganic Chemistry, 2011, 16, 333-340.	2.6	23
95	Copper(II) Coordination to Amyloidâ€Î²: Murine versus Human Peptide. Angewandte Chemie - International Edition, 2011, 50, 901-905.	13.8	74
96	Xâ€ray and Solution Structures of Cu ^{II} GHK and Cu ^{II} DAHK Complexes: Influence on Their Redox Properties. Chemistry - A European Journal, 2011, 17, 10151-10160.	3.3	115
97	Copper Transfer from Cu–Al̂² to Human Serum Albumin Inhibits Aggregation, Radical Production and Reduces Al̂² Toxicity. ChemBioChem, 2010, 11, 110-118.	2.6	82
98	Two Functions, One Molecule: A Metalâ€Binding and a Targeting Moiety to Combat Alzheimer's Disease. ChemBioChem, 2010, 11, 950-953.	2.6	47
99	Neuronal growthâ€inhibitory factor (metallothioneinâ€3): reactivity and structure of metal–thiolate clusters*. FEBS Journal, 2010, 277, 2921-2930.	4.7	42
100	Zinc release of Zn7-metallothionein-3 induces fibrillar type amyloid-β aggregates. Metallomics, 2010, 2, 741.	2.4	34
101	Modeling the Cu ⁺ Binding in the 1â^'16 Region of the Amyloid-β Peptide Involved in Alzheimer's Disease. Journal of Physical Chemistry B, 2010, 114, 15119-15133.	2.6	63
102	Copper and Zinc Binding to Amyloidâ€Î²: Coordination, Dynamics, Aggregation, Reactivity and Metalâ€ŀon Transfer. ChemBioChem, 2009, 10, 2837-2845.	2.6	257
103	Deprotonation of the Asp1Ala2 Peptide Bond Induces Modification of the Dynamic Copper(II) Environment in the Amyloidâ€Î² Peptide near Physiological pH. Angewandte Chemie - International Edition, 2009, 48, 9522-9525.	13.8	118
104	Pulse EPR Spectroscopy Reveals the Coordination Sphere of Copper(II) Ions in the 1–16 Amyloidâ€Î² Peptide: A Key Role of the First Two Nâ€Terminus Residues. Angewandte Chemie - International Edition, 2009, 48, 9273-9276.	13.8	176
105	Mechanism of zinc(II)-promoted amyloid formation: zinc(II) binding facilitates the transition from the partially α-helical conformer to aggregates of amyloid β protein(1–28). Journal of Biological Inorganic Chemistry, 2009, 14, 449-455.	2.6	47
106	Importance of dynamical processes in the coordination chemistry and redox conversion of copper amyloid-β complexes. Journal of Biological Inorganic Chemistry, 2009, 14, 995-1000.	2.6	116
107	Intense Raman bands and low luminescence of thin films of heme proteins on silica. Chemical Physics Letters, 2009, 478, 66-69.	2.6	2
108	Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide. Dalton Transactions, 2009, , 1080-1094.	3.3	464

#	Article	IF	CITATIONS
109	Aβ-mediated ROS production by Cu ions: Structural insights, mechanisms and relevance to Alzheimer's disease. Biochimie, 2009, 91, 1212-1217.	2.6	232
110	Folding of the prion peptide GGGTHSQW around the copper(II) ion: identifying the oxygen donor ligand at neutral pH and probing the proximity of the tryptophan residue to the copper ion. Journal of Biological Inorganic Chemistry, 2008, 13, 1055-1064.	2.6	29
111	Thioflavin Derivatives as Markers for Amyloidâ€Î² Fibrils: Insights into Structural Features Important for Highâ€Affinity Binding. ChemMedChem, 2008, 3, 63-66.	3.2	63
112	Metal swap between Zn7-metallothionein-3 and amyloid-β–Cu protects against amyloid-β toxicity. Nature Chemical Biology, 2008, 4, 366-372.	8.0	181
113	Amyloid fibrils: modulation of formation and structure by copper(ii). New Journal of Chemistry, 2008, 32, 1189.	2.8	26
114	Redox Silencing of Copper in Metal-linked Neurodegenerative Disorders. Journal of Biological Chemistry, 2007, 282, 16068-16078.	3.4	113
115	Evidence that the Principal Coll-Binding Site in Human Serum Albumin Is Not at the N-Terminus: Implication on the Albumin Cobalt Binding Test for Detecting Myocardial Ischemia. Biochemistry, 2007, 46, 2267-2274.	2.5	95
116	Zinc Binding to Amyloid-β:  Isothermal Titration Calorimetry and Zn Competition Experiments with Zn Sensors. Biochemistry, 2007, 46, 13658-13666.	2.5	101
117	Amyloid-Beta Peptide Forms Monomeric Complexes With Cull and Znll Prior to Aggregation. ChemBioChem, 2007, 8, 163-165.	2.6	89
118	Redox Chemistry of Copper–Amyloid-β: The Generation of Hydroxyl Radical in the Presence of Ascorbate is Linked to Redox-Potentials and Aggregation State. ChemBioChem, 2007, 8, 1317-1325.	2.6	245
119	Nanoscale needle shaped histidine and narrow vibrational Raman bands using visible excitation. Chemical Physics Letters, 2007, 439, 360-363.	2.6	1
120	Zinc(II) binds to the neuroprotective peptide humanin. Journal of Inorganic Biochemistry, 2006, 100, 1672-1678.	3.5	43
121	Structural and thermodynamical properties of Cull amyloid-β16/28 complexes associated with Alzheimer's disease. Journal of Biological Inorganic Chemistry, 2006, 11, 1024-1038.	2.6	130
122	Characterization of the ZnII Binding to the Peptide Amyloid-β1-16 linked to Alzheimer's Disease. ChemBioChem, 2005, 6, 1663-1671.	2.6	79
123	Metal-Binding Properties of the Peptide APP170-188: A Model of the ZnII-Binding Site of Amyloid Precursor Protein (APP). Chemistry - A European Journal, 2005, 11, 903-909.	3.3	41
124	Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1706, 158-164.	1.0	227
125	Side-Path Electron Donors: Cytochrome b559, Chlorophyll Z and \hat{l}^2 -Carotene. , 2005, , 347-365.		30
126	The stable tyrosyl radical in Photosystem II: why D?. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1655, 222-230.	1.0	98

#	Article	IF	CITATIONS
127	Resolving intermediates in biological proton-coupled electron transfer: A tyrosyl radical prior to proton movement. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8732-8735.	7.1	112
128	Photosystem II: evolutionary perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 245-253.	4.0	106
129	Activity of Metal-Responsive Transcription Factor 1 by Toxic Heavy Metals and H2O2 In Vitro Is Modulated by Metallothionein. Molecular and Cellular Biology, 2003, 23, 8471-8485.	2.3	224
130	Coordination Studies of the Metal Center of Hemocyanin by ^{199m} Hg Nuclear Quadrupole Interaction. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2002, 57, 623-626.	1.5	2
131	Tyrosine D Oxidation at Cryogenic Temperature in Photosystem II. Biochemistry, 2002, 41, 12914-12920.	2.5	74
132	Chlorophyll and Carotenoid Radicals in Photosystem II Studied by Pulsed ENDORâ€. Biochemistry, 2001, 40, 320-326.	2.5	43
133	β-Carotene Redox Reactions in Photosystem II: Electron Transfer Pathwayâ€. Biochemistry, 2001, 40, 6431-6440.	2.5	97
134	The heart of photosynthesis in glorious 3D. Trends in Biochemical Sciences, 2001, 26, 341-344.	7.5	46
135	Rapid formation of the stable tyrosyl radical in photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14368-14373.	7.1	118
136	Metal-thiolate clusters in neuronal growth inhibitory factor (GIF). Journal of Inorganic Biochemistry, 2000, 79, 7-10.	3.5	19
137	Optical and TDPAC spectroscopy of Hg(II)-rubredoxin: model for a mononuclear tetrahedral [Hg(CysS)4]2â^' center. Journal of Biological Inorganic Chemistry, 2000, 5, 393-401.	2.6	23
138	High-Field EPR Study of Carotenoid•+and the Angular Orientation of Chlorophyllz•+in Photosystem II. Journal of Physical Chemistry B, 2000, 104, 10960-10963.	2.6	25
139	Carotenoid Oxidation in Photosystem Ilâ€. Biochemistry, 1999, 38, 8189-8195.	2.5	183
140	Evidence for a Dynamic Structure of Human Neuronal Growth Inhibitory Factor and for Major Rearrangements of Its Metalâ^'Thiolate Clustersâ€. Biochemistry, 1999, 38, 10158-10167.	2.5	97
141	Detection of two novel lowest lying singlet-triplet transitions of the Cî—,Sî—,C chromophore in L-methionine. Inorganica Chimica Acta, 1998, 272, 150-152.	2.4	5
142	Growth inhibitory factor and zinc affect neural cell cultures in a tissue specific manner. Chemico-Biological Interactions, 1998, 115, 167-174.	4.0	14
143	Structural characterization of Cu(I) and Zn(II) sites in neuronal-growth-inhibitory factor by extended X-ray absorption fine structure (EXAFS). FEBS Journal, 1998, 255, 172-177.	0.2	50
144	Metalâ^'Thiolate Clusters in the C-Terminal Domain of Human Neuronal Growth Inhibitory Factor (GIF)â€. Biochemistry, 1998, 37, 14966-14973.	2.5	61

#	Article	IF	CITATIONS
145	Distinct Metalâ°'Thiolate Clusters in the N-Terminal Domain of Neuronal Growth Inhibitory Factor. Biochemistry, 1997, 36, 13341-13348.	2.5	73
146	Isolation and characterization of a novel monomeric zinc- and heme-containing protein from bovine brain. FEBS Letters, 1996, 395, 33-38.	2.8	9
147	Evidence for Cu(I) Clusters and Zn(II) Clusters in Neuronal Growth-Inhibitory Factor Isolated from Bovine Brain. FEBS Journal, 1996, 238, 698-705.	0.2	52
148	Isolation, primary structures and metal binding properties of neuronal growth inhibitory factor (GIF) from bovine and equine brain. FEBS Letters, 1994, 345, 193-197.	2.8	59