

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1443050/publications.pdf Version: 2024-02-01

μα Υλη

#	Article	IF	CITATIONS
1	Electronic Nose Feature Extraction Methods: A Review. Sensors, 2015, 15, 27804-27831.	3.8	207
2	Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing. Advanced Electronic Materials, 2022, 8, .	5.1	94
3	A background elimination method based on wavelet transform in wound infection detection by electronic nose. Sensors and Actuators B: Chemical, 2011, 157, 395-400.	7.8	38
4	A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach. Sensors, 2017, 17, 1434.	3.8	26
5	Improving the performance of drifted/shifted electronic nose systems by cross-domain transfer using common transfer samples. Sensors and Actuators B: Chemical, 2021, 329, 129162.	7.8	26
6	Enhancing Electronic Nose Performance Based on a Novel QPSO-KELM Model. Sensors, 2016, 16, 520.	3.8	22
7	A Novel Feature Extraction Approach Using Window Function Capturing and QPSO-SVM for Enhancing Electronic Nose Performance. Sensors, 2015, 15, 15198-15217.	3.8	21
8	TDACNN: Target-domain-free domain adaptation convolutional neural network for drift compensation in gas sensors. Sensors and Actuators B: Chemical, 2022, 361, 131739.	7.8	20
9	Enhancing the Discrimination Ability of a Gas Sensor Array Based on a Novel Feature Selection and Fusion Framework. Sensors, 2018, 18, 1909.	3.8	19
10	A Drift-Compensating Novel Deep Belief Classification Network to Improve Gas Recognition of Electronic Noses. IEEE Access, 2020, 8, 121385-121397.	4.2	19
11	Subspace alignment based on an extreme learning machine for electronic nose drift compensation. Knowledge-Based Systems, 2022, 235, 107664.	7.1	19
12	Sensor Drift Compensation of E-Nose Systems With Discriminative Domain Reconstruction Based on an Extreme Learning Machine. IEEE Sensors Journal, 2021, 21, 17144-17153.	4.7	17
13	An Enhanced Quantum-Behaved Particle Swarm Optimization Based on a Novel Computing Way of Local Attractor. Information (Switzerland), 2015, 6, 633-649.	2.9	16
14	A Solid Trap and Thermal Desorption System with Application to a Medical Electronic Nose. Sensors, 2008, 8, 6885-6898.	3.8	13
15	Local Manifold Embedding Cross-Domain Subspace Learning for Drift Compensation of Electronic Nose Data. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	13
16	Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing. Sensors, 2018, 18, 388.	3.8	12
17	A Novel Pre-Processing Technique for Original Feature Matrix of Electronic Nose Based on Supervised Locality Preserving Projections. Sensors, 2016, 16, 1019.	3.8	10
18	A Novel Optimization Technique to Improve Gas Recognition by Electronic Noses Based on the Enhanced Krill Herd Algorithm. Sensors, 2016, 16, 1275.	3.8	8

Jia Yan

#		IF	CITATIONS
-11*			CHAHONS
19	A Novel Semi-Supervised Electronic Nose Learning Technique: M-Training. Sensors, 2016, 16, 370.	3.8	5
20	A Novel Semi-Supervised Method of Electronic Nose for Indoor Pollution Detection Trained by M-S4VMs. Sensors, 2016, 16, 1462.	3.8	4
21	QBC-Softmax Algorithm for E-nose Data Processing Based on Different Informativeness Evaluations. , 2018, , .		1
22	An Improved Sampling Strategy for QBC Algorithm and its Application on Gas Sensor Array Signal Processing. , 2018, , .		0