## Javier Calvente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1442897/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Fast Current-Based MPPT Technique Employing Sliding Mode Control. IEEE Transactions on<br>Industrial Electronics, 2013, 60, 1168-1178.                                                | 5.2 | 190       |
| 2  | Perturb and Observe MPPT algorithm with a current controller based on the sliding mode.<br>International Journal of Electrical Power and Energy Systems, 2013, 44, 346-356.             | 3.3 | 132       |
| 3  | A Noninverting Buck–Boost DC–DC Switching Converter With High Efficiency and Wide Bandwidth.<br>IEEE Transactions on Power Electronics, 2011, 26, 2490-2503.                            | 5.4 | 110       |
| 4  | Current-Mode Control of a Coupled-Inductor Buck–Boost DC–DC Switching Converter. IEEE<br>Transactions on Power Electronics, 2012, 27, 2536-2549.                                        | 5.4 | 82        |
| 5  | Sliding and fuzzy control of a boost converter using an 8-bit microcontroller. IET Electric Power Applications, 2004, 151, 5.                                                           | 1.4 | 76        |
| 6  | Two-Loop Digital Sliding Mode Control of DC–DC Power Converters Based on Predictive Interpolation. IEEE Transactions on Industrial Electronics, 2011, 58, 2491-2501.                    | 5.2 | 76        |
| 7  | Analysis of a bidirectional coupled-inductor Cuk converter operating in sliding mode. IEEE<br>Transactions on Circuits and Systems Part 1: Regular Papers, 1998, 45, 355-363.           | 0.1 | 74        |
| 8  | Identification of a Proton-Exchange Membrane Fuel Cell's Model Parameters by Means of an Evolution<br>Strategy. IEEE Transactions on Industrial Informatics, 2015, 11, 548-559.         | 7.2 | 74        |
| 9  | Using Magnetic Coupling to Eliminate Right Half-Plane Zeros in Boost Converters. IEEE Power<br>Electronics Letters, 2004, 2, 58-62.                                                     | 1.1 | 69        |
| 10 | Hysteretic Transition Method for Avoiding the Dead-Zone Effect and Subharmonics in a Noninverting<br>Buck–Boost Converter. IEEE Transactions on Power Electronics, 2015, 30, 3418-3430. | 5.4 | 67        |
| 11 | Dynamics and Stability Issues of a Single-Inductor Dual-Switching DC–DC Converter. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57, 415-426.                      | 3.5 | 61        |
| 12 | Synthesis of loss-free resistors based on sliding-mode control and its applications in power processing. Control Engineering Practice, 2013, 21, 689-699.                               | 3.2 | 60        |
| 13 | An Efficiency Comparison of Fuel-Cell Hybrid Systems Based on the Versatile Buck–Boost Converter.<br>IEEE Transactions on Power Electronics, 2018, 33, 1237-1246.                       | 5.4 | 47        |
| 14 | Large-signal modeling and simulation of switching DC-DC converters. IEEE Transactions on Power Electronics, 1997, 12, 485-494.                                                          | 5.4 | 45        |
| 15 | Fast Transitions Between Current Control Loops of the Coupled-Inductor Buck–Boost DC–DC<br>Switching Converter. IEEE Transactions on Power Electronics, 2013, 28, 3648-3652.            | 5.4 | 45        |
| 16 | Minimizing the effects of shadowing in a PV module by means of active voltage sharing. , 2010, , .                                                                                      |     | 42        |
| 17 | Mathematical analysis of hybrid topologies efficiency for PEM fuel cell power systems design.<br>International Journal of Electrical Power and Energy Systems, 2010, 32, 1049-1061.     | 3.3 | 41        |
| 18 | An\$H_infty \$Control Strategy for Switching Converters in Sliding-Mode Current Control. IEEE<br>Transactions on Power Electronics, 2006, 21, 553-556.                                  | 5.4 | 40        |

JAVIER CALVENTE

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Interleaved Converters Based on Sliding-Mode Control in a Ring Configuration. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 2566-2577.                                         | 3.5 | 40        |
| 20 | Energy Management of a Fuel-Cell Serial–Parallel Hybrid System. IEEE Transactions on Industrial Electronics, 2015, 62, 5227-5235.                                                                       | 5.2 | 40        |
| 21 | Zero dynamics-based design of damping networks for switching converters. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39, 1292-1303.                                                    | 2.6 | 39        |
| 22 | Design of AC–DC PFC High-Order Converters With Regulated Output Current for Low-Power Applications. IEEE Transactions on Power Electronics, 2016, 31, 2012-2025.                                        | 5.4 | 37        |
| 23 | Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell<br>Applications—Part 1: Circuit Generation, Analysis and Design. Energies, 2012, 5, 4590-4623.                       | 1.6 | 34        |
| 24 | Fuel cell emulator for oxygen excess ratio estimation on power electronics applications. Computers and Electrical Engineering, 2012, 38, 926-937.                                                       | 3.0 | 34        |
| 25 | Analysis of a Self-Oscillating Bidirectional DC–DC Converter in Battery Energy Storage Applications.<br>IEEE Transactions on Power Delivery, 2012, 27, 1292-1300.                                       | 2.9 | 29        |
| 26 | Simplified Mathematical Model for Calculating the Oxygen Excess Ratio of a PEM Fuel Cell System in Real-Time Applications. IEEE Transactions on Industrial Electronics, 2014, 61, 2816-2825.            | 5.2 | 29        |
| 27 | Why is sliding mode control methodology needed for power converters?. , 2010, , .                                                                                                                       |     | 28        |
| 28 | Soft Switching Bidirectional Converter for Battery Discharging-Charging. , 0, , .                                                                                                                       |     | 27        |
| 29 | Classification and synthesis of power gyrators. IET Electric Power Applications, 2006, 153, 802.                                                                                                        | 1.4 | 26        |
| 30 | Fast-Scale Stability Analysis of a DC–DC Boost Converter With a Constant Power Load. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 549-558.                               | 3.7 | 26        |
| 31 | Stability analysis of a single inductor dual switching dc–dc converter. Mathematics and Computers in Simulation, 2006, 71, 256-269.                                                                     | 2.4 | 24        |
| 32 | Bidirectional High-Efficiency Nonisolated Step-Up Battery Regulator. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47, 2230-2239.                                                        | 2.6 | 24        |
| 33 | Direct digital design of a sliding modeâ€based control of a PWM synchronous buck converter. IET<br>Power Electronics, 2017, 10, 1714-1720.                                                              | 1.5 | 24        |
| 34 | Multisampled Digital Average Current Controls of the Versatile Buck–Boost Converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 879-890.                               | 3.7 | 24        |
| 35 | Static and Dynamic Current–Voltage Modeling of a Proton Exchange Membrane Fuel Cell Using an<br>Input–Output Diffusive Approach. IEEE Transactions on Industrial Electronics, 2016, 63, 1003-1015.<br>– | 5.2 | 23        |
| 36 | Energy Management DC System Based on Current-Controlled Buck-Boost Modules. IEEE Transactions on Smart Grid, 2014, 5, 2644-2653.                                                                        | 6.2 | 21        |

JAVIER CALVENTE

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Inherent DCM operation of the asymmetrical interleaved dual buck-boost. , 0, , .                                                                                   |     | 20        |
| 38 | HM/PWM Seamless Control of a Bidirectional Buck–Boost Converter for a Photovoltaic Application.<br>IEEE Transactions on Power Electronics, 2019, 34, 2887-2899.    | 5.4 | 19        |
| 39 | Compensating networks for sliding-mode control. , 0, , .                                                                                                           |     | 18        |
| 40 | Design of photovoltaic-based current sources for maximum power transfer by means of power gyrators. IET Power Electronics, 2011, 4, 674.                           | 1.5 | 18        |
| 41 | Sliding-Mode Control of DC-DC Switching Converters. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 1910-1916.              | 0.4 | 17        |
| 42 | Dynamic optimization of bidirectional topologies for battery charge/discharge in satellites. , 0, , .                                                              |     | 16        |
| 43 | Bidirectional Coupled Inductors Step-up Converter for Battery Discharging-Charging. , 0, , .                                                                       |     | 12        |
| 44 | Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell<br>Applications—Part 2: Control-Oriented Models. Energies, 2013, 6, 5570-5596.  | 1.6 | 12        |
| 45 | LQR control of an asymmetrical interleaved boost converter working in inherent DCM. , 2005, , .                                                                    |     | 10        |
| 46 | A fast current-based MPPT technique based on sliding mode control. , 2011, , .                                                                                     |     | 10        |
| 47 | Synthesis of power gyrators operating at constant switching frequency. IET Electric Power Applications, 2006, 153, 842.                                            | 1.4 | 9         |
| 48 | Prediction of subharmonic oscillation in switching regulators: from a slope to a ripple standpoint.<br>International Journal of Electronics, 2016, 103, 2090-2109. | 0.9 | 9         |
| 49 | Coupled inductors design of the bidirectional nonâ€inverting buck–boost converter for highâ€voltage<br>applications. IET Power Electronics, 2020, 13, 3188-3198.   | 1.5 | 9         |
| 50 | Low frequency multilevel inverters for renewable energy systems. , 2005, , .                                                                                       |     | 8         |
| 51 | Bidirectional High-Power High-Efficiency non-isolated step-up DC-DC Converter. , 0, , .                                                                            |     | 8         |
| 52 | A Bidirectional Versatile Buck–Boost Converter Driver for Electric Vehicle Applications. Sensors, 2021, 21, 5712.                                                  | 2.1 | 8         |
| 53 | Self-oscillating interleaved boost regulator with loss free resistor characteristic. , 0, , .                                                                      |     | 8         |
| 54 | Design of a sinusoidal current source using a sliding-mode-controlled asymmetrical full-bridge multilevel converter. IET Power Electronics, 2008, 1, 203.          | 1.5 | 7         |

JAVIER CALVENTE

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Review of the Main Power Electronics' Advances in Order to Ensure Efficient Operation and<br>Durability of PEMFCs. Automatika, 2012, 53, 184-198.                                                                   | 1.2 | 7         |
| 56 | Boundaries of Subharmonic Oscillations Associated With Filtering Effects of Controllers and<br>Current Sensors in Switched Converters Under CMC. IEEE Transactions on Industrial Electronics,<br>2016, 63, 4826-4837. | 5.2 | 7         |
| 57 | A Large-Signal Model for a Peak Current Mode Controlled Boost Converter With Constant Power<br>Loads. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 559-568.                            | 3.7 | 7         |
| 58 | Subharmonics, bifurcations and chaos in a sliding-mode controlled boost switching regulator. , 0, , .                                                                                                                 |     | 6         |
| 59 | Synthesis of PWM-based power gyrators. , 2005, , .                                                                                                                                                                    |     | 6         |
| 60 | Multisampled average current control of switching power converters. , 2015, , .                                                                                                                                       |     | 6         |
| 61 | Design of a bidirectional DC/DC converter with coupled inductor for an electric vehicle application. , 2017, , .                                                                                                      |     | 6         |
| 62 | Design of Current Programmed Switching Converters Using Sliding-Mode Control Theory. Energies, 2018, 11, 2034.                                                                                                        | 1.6 | 6         |
| 63 | Input voltage sliding mode control of the versatile buck-boost converter for photovoltaic applications. , 2015, , .                                                                                                   |     | 5         |
| 64 | Small Signal Modelling for Variable Frequency Control With Maximum Efficiency Point Tracking of DAB Converter. IEEE Access, 2021, 9, 85289-85299.                                                                     | 2.6 | 5         |
| 65 | Fuel Cell Power Output Using a LQR Controlled AIDB Converter. , 2007, , .                                                                                                                                             |     | 4         |
| 66 | Simulator of a PEM fuel-cell stack based on a dynamic model. , 2009, , .                                                                                                                                              |     | 4         |
| 67 | Digital current control of the versatile buck-boost converter for photovoltaic applications. , 2017, , .                                                                                                              |     | 4         |
| 68 | Digital Control of a Buck Converter Based on Input-Output Linearization. An Interpretation Using Discrete-Time Sliding Control Theory. Energies, 2019, 12, 2738.                                                      | 1.6 | 4         |
| 69 | Analysis of Non-Minimum Phase System for AC/DC Battery Charger Power Factor Correction Converter. Applied Sciences (Switzerland), 2022, 12, 868.                                                                      | 1.3 | 4         |
| 70 | Simulation-Oriented Continuous Model of Hysteretic Controlled DC-to-DC Converters. , 2007, , .                                                                                                                        |     | 3         |
| 71 | Predictive Digital Sliding-Mode Current Control. , 2007, , .                                                                                                                                                          |     | 3         |
| 72 | ADC Quantization Effects in Two-Loop Digital Current Controlled DC-DC Power Converters: Analysis and Design Guidelines. Applied Sciences (Switzerland), 2020, 10, 7179.                                               | 1.3 | 3         |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Large-signal analysis and simulation of switching regulators. , 0, , .                                                                                                               |     | 2         |
| 74 | Push-pull switching power amplifier with sliding-mode control. , 0, , .                                                                                                              |     | 2         |
| 75 | Self-oscillating boost converter with output filter for ideal load regulation. , 0, , .                                                                                              |     | 2         |
| 76 | Design of locally stable sliding modes in bidirectional switching converters. , 0, , .                                                                                               |     | 2         |
| 77 | Improving the perturb and observe Maximum Power Point Tracking by using Sliding Mode control. , 2011, , .                                                                            |     | 2         |
| 78 | Reactivation System for Proton-Exchange Membrane Fuel-Cells. Energies, 2012, 5, 2404-2423.                                                                                           | 1.6 | 2         |
| 79 | Effects of non-ideal current sensing on subharmonic oscillation boundary in DC-DC switching converters under CMC. , 2013, , .                                                        |     | 2         |
| 80 | Sliding Mode Control of a Ćuk converter with variable hysteresis width for HBLEDs applications. , 2014, , .                                                                          |     | 2         |
| 81 | DC transformer based on the versatile DC-DC noninverting buck-boost converter for fuel cell emulation. , 2017, , .                                                                   |     | 2         |
| 82 | Sliding-mode control of a boost converter feeding a buck converter operating as a constant power load. , 2017, , .                                                                   |     | 2         |
| 83 | Novel autonomous current mode one-cycle controller for PFC AC-DC pre-regulators. , 0, , .                                                                                            |     | 1         |
| 84 | Three Dimensional Discrete Map for a Single Inductor Current Mode Controlled Dual Switching<br>DC-DC Converter. , 2006, , .                                                          |     | 1         |
| 85 | Predictive one-cycle current control of a boost converter. , 2012, , .                                                                                                               |     | 1         |
| 86 | Energy management of a fuel cell serial-parallel hybrid system. , 2014, , .                                                                                                          |     | 1         |
| 87 | Direct digital design of a proportional robust control based on sliding for dual active bridge converters. , 2019, , .                                                               |     | 1         |
| 88 | Symmetrical power supply for 42 v automotive applications. Facta Universitatis - Series Electronics and Energetics, 2004, 17, 365-376.                                               | 0.6 | 1         |
| 89 | A novel control strategy to improve the power factor of a Ćuk converter for HBLEDs application. , 2013, , .                                                                          |     | 0         |
| 90 | Step-Up and Step-Down Converter Integrated With Motor Inverter for Powertrain Applications. IEEE<br>Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 285-296. | 3.7 | 0         |

| #  | Article                                                                                                                     | IF | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 91 | Three Dimensional Discrete Map for a Single Inductor Current Mode Controlled Dual Switching<br>DC-DC Converter. , 2006, , . |    | 0         |
|    |                                                                                                                             |    |           |