Odile Bruneel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1442816/odile-bruneel-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 1,987 40 41 h-index g-index citations papers 41 2,249 5.5 3.97 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
40	Metatranscriptomic outlook on green and brown food webs in acid mine drainage. <i>Environmental Microbiology Reports</i> , 2021 , 13, 606-615	3.7	1
39	Description of Microbial Communities of Phosphate Mine Wastes in Morocco, a Semi-Arid Climate, Using High-Throughput Sequencing and Functional Prediction. <i>Frontiers in Microbiology</i> , 2021 , 12, 66693	3 ē ·7	O
38	Contrasting arsenic biogeochemical cycling in two Moroccan alkaline pit lakes. <i>Research in Microbiology</i> , 2020 , 171, 28-36	4	4
37	In situ metabolic activities of uncultivated Ferrovum sp. CARN8 evidenced by metatranscriptomic analysis. <i>Research in Microbiology</i> , 2020 , 171, 37-43	4	3
36	Role of microorganisms in rehabilitation of mining sites, focus on Sub Saharan African countries. Journal of Geochemical Exploration, 2019 , 205, 106327	3.8	11
35	Polymetallic pollution from abandoned mines in Mediterranean regions: a multidisciplinary approach to environmental risks. <i>Regional Environmental Change</i> , 2018 , 18, 677-692	4.3	26
34	Dynamics of Bacterial Communities Mediating the Treatment of an As-Rich Acid Mine Drainage in a Field Pilot. <i>Frontiers in Microbiology</i> , 2018 , 9, 3169	5.7	16
33	In-depth characterization of bacterial and archaeal communities present in the abandoned Kettara pyrrhotite mine tailings (Morocco). <i>Extremophiles</i> , 2017 , 21, 671-685	3	23
32	Spatial Distribution of Eukaryotic Communities Using High-Throughput Sequencing Along a Pollution Gradient in the Arsenic-Rich Creek Sediments of Carnoul Mine, France. <i>Microbial Ecology</i> , 2016 , 72, 608-20	4.4	15
31	Spatio-Temporal Detection of the Thiomonas Population and the Thiomonas Arsenite Oxidase Involved in Natural Arsenite Attenuation Processes in the Carnoul Acid Mine Drainage. Frontiers in Cell and Developmental Biology, 2016, 4, 3	5.7	9
30	Environmental microbiology as a mosaic of explored ecosystems and issues. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 13577-98	5.1	6
29	Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and other drivers along an acid mine drainage. <i>FEMS Microbiology Ecology</i> , 2014 , 90, 247-63	4.3	51
28	Release of arsenite, arsenate and methyl-arsenic species from streambed sediment affected by acid mine drainage: a microcosm study. <i>Environmental Chemistry</i> , 2014 , 11, 514	3.2	13
27	Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage. <i>Environmental Science & Environmental Science & Environm</i>	10.3	52
26	Fate of Sb(V) and Sb(III) species along a gradient of pH and oxygen concentration in the Carnoul mine waters (Southern France). <i>Environmental Sciences: Processes and Impacts</i> , 2013 , 15, 1536-44	4.3	14
25	Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoul acid mine drainage, France: Comparison with biotic and abiotic model compounds and implications for As remediation. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 104, 310-329	5.5	71
24	Three-year survey of sulfate-reducing bacteria community structure in Carnoul acid mine drainage (France), highly contaminated by arsenic. <i>FEMS Microbiology Ecology</i> , 2013 , 83, 724-37	4.3	37

(2004-2012)

23	Response to Comment on Bredominance of Aqueous Tl(I) Species in the River System Downstream from the Abandoned Carnoul Mine (Southern France) <i>Environmental Science & Enp; Technology</i> , 2012 , 46, 2475-2476	10.3	1
22	Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoul Mine, France. Extremophiles, 2012, 16, 645-57	3	36
21	Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. <i>ISME Journal</i> , 2011 , 5, 1735-47	11.9	128
20	Characterization of the active bacterial community involved in natural attenuation processes in arsenic-rich creek sediments. <i>Microbial Ecology</i> , 2011 , 61, 793-810	4.4	61
19	Predominance of aqueous Tl(I) species in the river system downstream from the abandoned Carnoul mine (Southern France). <i>Environmental Science & Environmental Science & Envir</i>	10.3	73
18	Structure, function, and evolution of the Thiomonas spp. genome. <i>PLoS Genetics</i> , 2010 , 6, e1000859	6	101
17	An updated insight into the natural attenuation of As concentrations in Reigous Creek (southern France). <i>Applied Geochemistry</i> , 2010 , 25, 1949-1957	3.5	42
16	Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water. <i>Chemical Geology</i> , 2009 , 265, 432-441	4.2	83
15	Hydrological and geochemical control of metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous River, France); preliminary assessment of impacts on fish (Leuciscus cephalus). <i>Applied Geochemistry</i> , 2009 , 24, 787-799	3.5	79
14	Nanoscale study of As biomineralization in an acid mine drainage system. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 3949-3963	5.5	58
13	Iron isotopes in acid mine waters and iron-rich solids from the Tinto Ddiel Basin (Iberian Pyrite Belt, Southwest Spain). <i>Chemical Geology</i> , 2008 , 253, 162-171	4.2	26
12	Archaeal diversity in a Fe-As rich acid mine drainage at Carnoul (France). Extremophiles, 2008, 12, 563-7	3	40
11	Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoull, France. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 551-6	4.8	116
10	A new bacterial strain mediating As oxidation in the Fe-rich biofilm naturally growing in a groundwater Fe treatment pilot unit. <i>Chemosphere</i> , 2006 , 64, 492-6	8.4	18
9	Evaluation of protective effect of DNA vaccination with genes encoding antigens GRA4 and SAG1 associated with GM-CSF plasmid, against acute, chronical and congenital toxoplasmosis in mice. <i>Vaccine</i> , 2005 , 23, 4489-99	4.1	82
8	Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. <i>Science of the Total Environment</i> , 2005 , 347, 122-30	10.2	67
7	Microbial Diversity in a Pyrite-Rich Tailings Impoundment (Carnouls, France). <i>Geomicrobiology Journal</i> , 2005 , 22, 249-257	2.5	41
6	Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnouls, France). <i>Science of the Total Environment</i> , 2004 , 320, 259-67	10.2	56

5	Geochemical Processes Controlling the Formation of As-Rich Waters Within a Tailings Impoundment (Carnoul, France). <i>Aquatic Geochemistry</i> , 2003 , 9, 273-290	1.7	31
4	Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnouls, France). <i>Journal of Applied Microbiology</i> , 2003 , 95, 492-9	4.7	84
3	Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnouls acid mine drainage, France. A XANES, XRD, and SEM study. <i>Environmental Science & Environmental &</i>	10.3	170
2	Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoul creek, France). Water Research, 2003, 37, 2929-36	12.5	148
1	Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Applied and Environmental Microbiology. 2003, 69, 6165-73	4.8	93