Per Johansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1442042/publications.pdf

Version: 2024-02-01

1307594 1199594 40 209 7 12 citations g-index h-index papers 41 41 41 120 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Optimum Design of a Moving Coil Actuator for Fast-Switching Valves in Digital Hydraulic Pumps and Motors. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2761-2770.	5.8	43
2	Optimal control of a wind turbine with digital fluid power transmission. Nonlinear Dynamics, 2018, 91, 591-607.	5.2	23
3	Fluid Stiction Modeling for Quickly Separating Plates Considering the Liquid Tensile Strength. Journal of Fluids Engineering, Transactions of the ASME, 2015, 137, .	1.5	14
4	LQR Feedback Control Development for Wind Turbines Featuring a Digital Fluid Power Transmission System. , 2016, , .		12
5	Optimum design of seat region in valves suitable for digital displacement machines. International Journal of Mechatronics and Automation, 2014, 4, 116.	0.2	11
6	DESIGN AND MODELLING OF FAST SWITCHING EFFICIENT SEAT VALVES FOR DIGITAL DISPLACEMENT PUMPS. Transactions of the Canadian Society for Mechanical Engineering, 2013, 37, 71-88.	0.8	9
7	Discrete Linear Time Invariant Analysis of Digital Fluid Power Pump Flow Control. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2017, 139, .	1.6	8
8	Event-Driven Control of a Speed Varying Digital Displacement Machine., 2017,,.		7
9	Challenges with Respect to Control of Digital Displacement Hydraulic Units. Modeling, Identification and Control, 2018, 39, 91-105.	1.1	7
10	On the Influence of Piston and Cylinder Density in Tribodynamics of a Radial Piston Digital Fluid Power Displacement Motor. , $2015, \ldots$		6
11	Modeling of movement-induced and flow-induced fluid forces in fast switching valves. , 2015, , .		6
12	Adaptive ultrasound reflectometry for lubrication film thickness measurements. Measurement Science and Technology, 2020, 31, 025108.	2.6	6
13	Model Predictive Control of Low-Speed Partial Stroke Operated Digital Displacement Pump Unit. Modeling, Identification and Control, 2018, 39, 167-177.	1.1	5
14	Optimization of geometry of annular seat valves suitable for Digital Displacement fluid power pumps/motors., 2013,,.		4
15	Design Method for Fast Switching Seat Valves for Digital Displacement $\hat{A}^{\text{@}}$ Machines. , 2014, , .		4
16	Oil Stiction in Fast Switching Annular Seat Valves for Digital Displacement Fluid Power Machines. , 2014, , .		4
17	Asymptotic Approximation of Laminar Lubrication Thermal Field at Low Reduced Peclet and Brinkman Number. Journal of Tribology, 2014, 136, .	1.9	4
18	Feedback Control of Pulse-Density-Modulated Digital Displacement Transmission Using a Continuous Approximation. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2472-2482.	5.8	4

#	Article	IF	Citations
19	Analysis of Temperature's Influence on a Digital Displacement Pump's Volumetric Efficiency. Applied Mechanics and Materials, 2012, 233, 24-27.	0.2	3
20	Topology selection and analysis of actuator for seat valves suitable for use in Digital Displacement pumps/motors. , 2013, , .		3
21	Analytical Thermal Field Theory Applicable to Oil Hydraulic Fluid Film Lubrication. , 2014, , .		3
22	Simulation of Dynamic Behaviour of a Digital Displacement Motor Using Transient 3D Computational Fluid Dynamics Analysis. , 2013 , , .		2
23	Modeling of Dynamic Fluid Forces in Fast Switching Valves. , 2015, , .		2
24	On the application of reynolds theory to thermo-piezo-viscous lubrication in oil hydraulics. , 2015, , .		2
25	A Robust Control Concept for Hydraulic Drives Based on Second Order Sliding Mode Disturbance Compensation. , 2017, , .		2
26	Investigation of Squeeze Film Damping and Associated Loads. , 2017, , .		2
27	Spectrum Estimation in Autocalibration of Ultrasonic Reflectometry Methods for Lubrication Film Thickness Measurements., 2018,,.		2
28	Layer ToF Methods for Ultrasonic Lubrication-film Thickness Measurements. , 2018, , .		2
29	Control and Performance Analysis of a Digital Direct Hydraulic Cylinder Drive. International Journal of Fluid Power, 0, , .	0.7	2
30	Method for Lumped Parameter Simulation of Digital Displacement Pumps/Motors Based on CFD. Applied Mechanics and Materials, 0, 397-400, 615-620.	0.2	1
31	Morphological topology generation of a digital fluid power displacement unit using Chebychev-Grübler-Kutzbach constraint. , 2015, , .		1
32	State of the Art Review on Theoretical Tribology of Fluid Power Displacement Machines. , 2016, , .		1
33	Influence of the Lubricant Thermo-Piezo-Viscous Property on Hydrostatic Bearings in Oil Hydraulics. , 2016, , .		1
34	Analysis of the Thermo-Viscous Effect on Friction and Energy Dissipation in Oil Lubricated Interfaces. , 2016, , .		1
35	Isogeometric Tribodynamics of a Radial Piston Fluid Power Motor. , 2018, , .		1
36	A Comparison of Adaptive Ultrasound Reflectometry Calibration Methods for Use in Lubrication Films. Energies, 2022, 15, 3240.	3.1	1

#	Article	IF	CITATIONS
37	Multibody Dynamics of a Fluid Power Radial Piston Motor Including Transient Hydrodynamic Pressure Models in Lubricating Gaps. , 2013, , .		0
38	Model Predictive Control and Discrete Analysis of Partial Stroke Operated Digital Displacement Unit. , 2018, , .		0
39	Fluid Stiction From a Contact Condition. International Journal of Fluid Power, 0, , .	0.7	O
40	Four Quadrant Hybrid Control Oriented Dynamical System Model of Digital Displacement $\hat{A}^{\text{@}}$ Units. , 2018, , .		0