Olivier Durupthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1441986/publications.pdf Version: 2024-02-01

Οιινιές Πιιριιστήν

#	Article	IF	CITATIONS
1	Risk Analysis and Technology Assessment of Emerging (Cd,Ce)2O2S Multifunctional Nanoparticles: An Attempt for Early Safer-by-Design Approach. Nanomaterials, 2022, 12, 422.	4.1	2
2	Continuous electroconversion of CO2 into formate using 2 nm tin oxide nanoparticles. Applied Catalysis B: Environmental, 2021, 297, 120447.	20.2	31
3	Interplay of Solid–Liquid Interactions and Anisotropic Aggregation in Solution: The Case Study of γ-AlOOH Crystallites. Journal of Physical Chemistry C, 2021, 125, 26049-26060.	3.1	4
4	Anatase TiO ₂ Nanorods as Cathode Materials for Aluminum-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 6428-6435.	5.0	40
5	Synthesis of supported ZSM-5 nanoparticles. Microporous and Mesoporous Materials, 2019, 287, 177-182.	4.4	4
6	Co ₃ O ₄ /rGO Catalysts for Oxygen Electrocatalysis: On the Role of the Oxide/Carbon Interaction. Journal of the Electrochemical Society, 2019, 166, H94-H102.	2.9	18
7	Size and shape effect on the photocatalytic efficiency of TiO2 brookite. Journal of Materials Science, 2019, 54, 1213-1225.	3.7	24
8	Heteroaggregation and Selective Deposition for the Fine Design of Nanoarchitectured Bifunctional Catalysts: Application to Hydroisomerization. ACS Catalysis, 2018, 8, 6071-6078.	11.2	41
9	Bipyramidal anatase TiO2 nanoparticles, a highly efficient photocatalyst? Towards a better understanding of the reactivity. Applied Catalysis B: Environmental, 2017, 203, 324-334.	20.2	18
10	Optimized Design of Ptâ€Đoped Bi ₂ WO ₆ Nanoparticle Synthesis for Enhanced Photocatalytic Properties. European Journal of Inorganic Chemistry, 2016, 2016, 2159-2165.	2.0	22
11	How Should Iron and Titanium be Combined in Oxides to Improve Photoelectrochemical Properties?. Journal of Physical Chemistry C, 2016, 120, 24521-24532.	3.1	35
12	Exposure to metal oxide nanoparticles administered at occupationally relevant doses induces pulmonary effects in mice. Nanotoxicology, 2016, 10, 1535-1544.	3.0	21
13	New Insights Into BiVO ₄ Properties as Visible Light Photocatalyst. Journal of Physical Chemistry C, 2015, 119, 12967-12977.	3.1	134
14	The Challenge of Studying TiO ₂ Nanoparticle Bioaccumulation at Environmental Concentrations: Crucial Use of a Stable Isotope Tracer. Environmental Science & Technology, 2015, 49, 2451-2459.	10.0	65
15	Morphological control of TiO2 anatase nanoparticles: What is the good surface property to obtain efficient photocatalysts?. Applied Catalysis B: Environmental, 2015, 174-175, 350-360.	20.2	66
16	Molecular Engineering of Functional Inorganic and Hybrid Materials. Chemistry of Materials, 2014, 26, 221-238.	6.7	147
17	Quantitative Analysis of the Proximities of OH Ligands and Vanadium Sites in a Polyoxovanadate Cluster Using Frequency-Selective 1H–51V Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 18580-18588.	3.1	10
18	Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. Particle and Fibre Toxicology, 2014, 11, 23.	6.2	79

OLIVIER DURUPTHY

#	Article	IF	CITATIONS
19	Ligand and Solvation Effects on the Structural and Electronic Properties of Small Gold Clusters. Journal of Physical Chemistry C, 2014, 118, 4362-4376.	3.1	34
20	Influence of Morphology and Crystallinity on Surface Reactivity of Nanosized Anatase TiO ₂ Studied by Adsorption Techniques. 2. Solid–Liquid Interface. Journal of Physical Chemistry C, 2013, 117, 4459-4469.	3.1	25
21	New Insights into Bi ₂ WO ₆ Properties as a Visible-Light Photocatalyst. Journal of Physical Chemistry C, 2013, 117, 22656-22666.	3.1	157
22	Experimental evidence of luminescence quenching at long coupling distances in europium (III) doped core-shell gold silica nanoparticles. Gold Bulletin, 2013, 46, 349-355.	2.4	7
23	A Soft Chemistry Route to Selective Nickelâ€Based Nanocatalysts with Faceted Morphologies. Particle and Particle Systems Characterization, 2013, 30, 532-541.	2.3	5
24	Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches. Optics Express, 2012, 20, 27636.	3.4	21
25	Nanocrystalline Brookite with Enhanced Stability and Photocatalytic Activity: Influence of Lanthanum(III) Doping. ACS Applied Materials & Interfaces, 2012, 4, 752-760.	8.0	26
26	Photocatalytic TiO ₂ Macroscopic Fibers Obtained Through Integrative Chemistry. European Journal of Inorganic Chemistry, 2012, 2012, 5350-5359.	2.0	13
27	A general route to nanostructured M[V3O8] and Mx[V6O16] (x = 1 and 2) and their first evaluation for building enzymatic biosensors. Journal of Materials Chemistry, 2012, 22, 15291.	6.7	11
28	Nano Design of Alumina Supported Monometallic Catalysts: A Promising Way to Improve the Selective Hydrogenation of Poly-Unsaturated Hydrocarbons. Topics in Catalysis, 2012, 55, 690-699.	2.8	7
29	Influence of Morphology and Crystallinity on Surface Reactivity of Nanosized Anatase TiO ₂ Studied by Adsorption Techniques. 1. The Use of Gaseous Molecular Probes. Journal of Physical Chemistry C, 2012, 116, 24596-24606.	3.1	12
30	Do TiO ₂ Nanoparticles Really Taste Better When Cooked in a Microwave Oven?. European Journal of Inorganic Chemistry, 2012, 2012, 2707-2715.	2.0	33
31	Effects of TiO2 nanoparticle polymorphism on dye-sensitized solar cell photovoltaic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 232, 22-31.	3.9	71
32	Biomimetic formation of Titania Thin Films: Effect of Amino Acids on the Deposition Process. ACS Applied Materials & Interfaces, 2011, 3, 1624-1632.	8.0	12
33	Bi ₂ O ₃ , BiVO ₄ , and Bi ₂ WO ₆ : Impact of Surface Properties on Photocatalytic Activity under Visible Light. Journal of Physical Chemistry C, 2011, 115, 5657-5666.	3.1	293
34	Basic concepts of the crystallization from aqueous solutions: The example of aluminum oxy(hydroxi)des and aluminosilicates. Comptes Rendus - Geoscience, 2011, 343, 113-122.	1.2	40
35	Thermal stability of TiO2-anatase: Impact of nanoparticles morphology on kinetic phase transformation. Solid State Sciences, 2010, 12, 989-995.	3.2	51
36	Design of metal oxide nanoparticles: Control of size, shape, crystalline structure and functionalization by aqueous chemistry. Comptes Rendus Chimie, 2010, 13, 40-51.	0.5	86

OLIVIER DURUPTHY

#	Article	IF	CITATIONS
37	Assembling Vanadium(V) Oxide and Gelatin into Novel Bionanocomposites with Unexpected Rubber-like Properties. Chemistry of Materials, 2010, 22, 398-408.	6.7	24
38	Nickel nanoparticles with controlled morphologies application in selective hydrogenation catalysis. Studies in Surface Science and Catalysis, 2010, 175, 521-524.	1.5	11
39	Growth of boehmite particles in the presence of xylitol: morphology oriented by the nest effect of hydrogen bonding. Physical Chemistry Chemical Physics, 2009, 11, 11310.	2.8	53
40	Room temperature sol–gel synthesis of crystalline Cs[V3O8]. Probing the hydration level of the interlamellar space by 51V and 133Cs MAS NMR spectroscopy. Journal of Materials Chemistry, 2008, 18, 3702.	6.7	14
41	Bioinspired Synthesis of Crystalline TiO ₂ : Effect of Amino Acids on Nanoparticles Structure and Shape. Crystal Growth and Design, 2007, 7, 2696-2704.	3.0	98
42	Deposition of Zinc Oxide and Layered Basic Zinc Salts from Aqueous Solutions Containing Amino Acids and Dipeptides. Journal of the Ceramic Society of Japan, 2006, 114, 911-917.	1.3	30
43	Intercalation of dipeptides during V2O5.nH2O xerogel condensation. Journal of Physics and Chemistry of Solids, 2006, 67, 944-949.	4.0	12
44	51V and 133Cs MAS NMR Investigation of Crystalline Trivanadate and Hexavanadate Phases Materials Research Society Symposia Proceedings, 2006, 984, 1.	0.1	0
45	Sol—Gel Synthesis of Li1+αV3O8. Part 1. From Precursors to Xerogel ChemInform, 2005, 36, no.	0.0	0
46	Vanadium Oxide Foams:  An Insight into the Structure of the Vanadium Oxide Walls. Chemistry of Materials, 2005, 17, 6395-6402.	6.7	30
47	Sol Gel Synthesis of Li1+αV3O8. 1. From Precursors to Xerogel. Chemistry of Materials, 2005, 17, 2276-2283.	6.7	37
48	Influence of pH and ionic strength on vanadium(v) oxides formation. From V2O5·nH2O gels to crystalline NaV3O8·1.5H2O. Journal of Materials Chemistry, 2005, 15, 1090-1098.	6.7	80
49	Spectroscopic Investigation of Interactions between Dipeptides and Vanadate(V) in Solution. Inorganic Chemistry, 2004, 43, 2021-2030.	4.0	14
50	Interactions of Amino-Containing Peptides with Sodium Silicate and Colloidal Silica:  A Biomimetic Approach of Silicification. Langmuir, 2002, 18, 2331-2336.	3.5	270
51	Theoretical ab initio study of Xenon pentafluoride anion. Mechanism of Xenon pseudorotation. Chemical Physics Letters, 2002, 363, 505-508.	2.6	1