Olivier Durupthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1441986/publications.pdf

Version: 2024-02-01

236925 206112 2,339 51 25 48 citations h-index g-index papers 53 53 53 4274 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bi ₂ O ₃ , BiVO ₄ , and Bi ₂ WO ₆ : Impact of Surface Properties on Photocatalytic Activity under Visible Light. Journal of Physical Chemistry C, 2011, 115, 5657-5666.	3.1	293
2	Interactions of Amino-Containing Peptides with Sodium Silicate and Colloidal Silica:  A Biomimetic Approach of Silicification. Langmuir, 2002, 18, 2331-2336.	3 . 5	270
3	New Insights into Bi ₂ WO ₆ Properties as a Visible-Light Photocatalyst. Journal of Physical Chemistry C, 2013, 117, 22656-22666.	3.1	157
4	Molecular Engineering of Functional Inorganic and Hybrid Materials. Chemistry of Materials, 2014, 26, 221-238.	6.7	147
5	New Insights Into BiVO ₄ Properties as Visible Light Photocatalyst. Journal of Physical Chemistry C, 2015, 119, 12967-12977.	3.1	134
6	Bioinspired Synthesis of Crystalline TiO ₂ : Effect of Amino Acids on Nanoparticles Structure and Shape. Crystal Growth and Design, 2007, 7, 2696-2704.	3.0	98
7	Design of metal oxide nanoparticles: Control of size, shape, crystalline structure and functionalization by aqueous chemistry. Comptes Rendus Chimie, 2010, 13, 40-51.	0.5	86
8	Influence of pH and ionic strength on vanadium(v) oxides formation. From V2O5·nH2O gels to crystalline NaV3O8·1.5H2O. Journal of Materials Chemistry, 2005, 15, 1090-1098.	6.7	80
9	Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. Particle and Fibre Toxicology, 2014, 11, 23.	6.2	79
10	Effects of TiO2 nanoparticle polymorphism on dye-sensitized solar cell photovoltaic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 232, 22-31.	3.9	71
11	Morphological control of TiO2 anatase nanoparticles: What is the good surface property to obtain efficient photocatalysts?. Applied Catalysis B: Environmental, 2015, 174-175, 350-360.	20.2	66
12	The Challenge of Studying TiO ₂ Nanoparticle Bioaccumulation at Environmental Concentrations: Crucial Use of a Stable Isotope Tracer. Environmental Science & Environmental & Enviro	10.0	65
13	Growth of boehmite particles in the presence of xylitol: morphology oriented by the nest effect of hydrogen bonding. Physical Chemistry Chemical Physics, 2009, 11, 11310.	2.8	53
14	Thermal stability of TiO2-anatase: Impact of nanoparticles morphology on kinetic phase transformation. Solid State Sciences, 2010, 12, 989-995.	3.2	51
15	Heteroaggregation and Selective Deposition for the Fine Design of Nanoarchitectured Bifunctional Catalysts: Application to Hydroisomerization. ACS Catalysis, 2018, 8, 6071-6078.	11.2	41
16	Basic concepts of the crystallization from aqueous solutions: The example of aluminum oxy(hydroxi)des and aluminosilicates. Comptes Rendus - Geoscience, 2011, 343, 113-122.	1.2	40
17	Anatase TiO ₂ Nanorods as Cathode Materials for Aluminum-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 6428-6435.	5.0	40
18	Sol Gel Synthesis of Li1+αV3O8. 1. From Precursors to Xerogel. Chemistry of Materials, 2005, 17, 2276-2283.	6.7	37

#	Article	IF	CITATIONS
19	How Should Iron and Titanium be Combined in Oxides to Improve Photoelectrochemical Properties?. Journal of Physical Chemistry C, 2016, 120, 24521-24532.	3.1	35
20	Ligand and Solvation Effects on the Structural and Electronic Properties of Small Gold Clusters. Journal of Physical Chemistry C, 2014, 118, 4362-4376.	3.1	34
21	Do TiO ₂ Nanoparticles Really Taste Better When Cooked in a Microwave Oven?. European Journal of Inorganic Chemistry, 2012, 2012, 2707-2715.	2.0	33
22	Continuous electroconversion of CO2 into formate using 2 nm tin oxide nanoparticles. Applied Catalysis B: Environmental, 2021, 297, 120447.	20.2	31
23	Vanadium Oxide Foams:  An Insight into the Structure of the Vanadium Oxide Walls. Chemistry of Materials, 2005, 17, 6395-6402.	6.7	30
24	Deposition of Zinc Oxide and Layered Basic Zinc Salts from Aqueous Solutions Containing Amino Acids and Dipeptides. Journal of the Ceramic Society of Japan, 2006, 114, 911-917.	1.3	30
25	Nanocrystalline Brookite with Enhanced Stability and Photocatalytic Activity: Influence of Lanthanum(III) Doping. ACS Applied Materials & Interfaces, 2012, 4, 752-760.	8.0	26
26	Influence of Morphology and Crystallinity on Surface Reactivity of Nanosized Anatase TiO ₂ Studied by Adsorption Techniques. 2. Solid–Liquid Interface. Journal of Physical Chemistry C, 2013, 117, 4459-4469.	3.1	25
27	Assembling Vanadium(V) Oxide and Gelatin into Novel Bionanocomposites with Unexpected Rubber-like Properties. Chemistry of Materials, 2010, 22, 398-408.	6.7	24
28	Size and shape effect on the photocatalytic efficiency of TiO2 brookite. Journal of Materials Science, 2019, 54, 1213-1225.	3.7	24
29	Optimized Design of Ptâ€Doped Bi ₂ WO ₆ Nanoparticle Synthesis for Enhanced Photocatalytic Properties. European Journal of Inorganic Chemistry, 2016, 2016, 2159-2165.	2.0	22
30	Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches. Optics Express, 2012, 20, 27636.	3.4	21
31	Exposure to metal oxide nanoparticles administered at occupationally relevant doses induces pulmonary effects in mice. Nanotoxicology, 2016, 10, 1535-1544.	3.0	21
32	Bipyramidal anatase TiO2 nanoparticles, a highly efficient photocatalyst? Towards a better understanding of the reactivity. Applied Catalysis B: Environmental, 2017, 203, 324-334.	20.2	18
33	Co ₃ O ₄ /rGO Catalysts for Oxygen Electrocatalysis: On the Role of the Oxide/Carbon Interaction. Journal of the Electrochemical Society, 2019, 166, H94-H102.	2.9	18
34	Spectroscopic Investigation of Interactions between Dipeptides and Vanadate(V) in Solution. Inorganic Chemistry, 2004, 43, 2021-2030.	4.0	14
35	Room temperature sol–gel synthesis of crystalline Cs[V3O8]. Probing the hydration level of the interlamellar space by 51V and 133Cs MAS NMR spectroscopy. Journal of Materials Chemistry, 2008, 18, 3702.	6.7	14
36	Photocatalytic TiO ₂ Macroscopic Fibers Obtained Through Integrative Chemistry. European Journal of Inorganic Chemistry, 2012, 2012, 5350-5359.	2.0	13

#	Article	IF	CITATIONS
37	Intercalation of dipeptides during V2O5.nH2O xerogel condensation. Journal of Physics and Chemistry of Solids, 2006, 67, 944-949.	4.0	12
38	Biomimetic formation of Titania Thin Films: Effect of Amino Acids on the Deposition Process. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1624-1632.	8.0	12
39	Influence of Morphology and Crystallinity on Surface Reactivity of Nanosized Anatase TiO ₂ Studied by Adsorption Techniques. 1. The Use of Gaseous Molecular Probes. Journal of Physical Chemistry C, 2012, 116, 24596-24606.	3.1	12
40	Nickel nanoparticles with controlled morphologies application in selective hydrogenation catalysis. Studies in Surface Science and Catalysis, 2010, 175, 521-524.	1.5	11
41	A general route to nanostructured M[V3O8] and $Mx[V6O16]$ (x = 1 and 2) and their first evaluation for building enzymatic biosensors. Journal of Materials Chemistry, 2012, 22, 15291.	6.7	11
42	Quantitative Analysis of the Proximities of OH Ligands and Vanadium Sites in a Polyoxovanadate Cluster Using Frequency-Selective 1H–51V Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 18580-18588.	3.1	10
43	Nano Design of Alumina Supported Monometallic Catalysts: A Promising Way to Improve the Selective Hydrogenation of Poly-Unsaturated Hydrocarbons. Topics in Catalysis, 2012, 55, 690-699.	2.8	7
44	Experimental evidence of luminescence quenching at long coupling distances in europium (III) doped core-shell gold silica nanoparticles. Gold Bulletin, 2013, 46, 349-355.	2.4	7
45	A Soft Chemistry Route to Selective Nickelâ€Based Nanocatalysts with Faceted Morphologies. Particle and Particle Systems Characterization, 2013, 30, 532-541.	2.3	5
46	Synthesis of supported ZSM-5 nanoparticles. Microporous and Mesoporous Materials, 2019, 287, 177-182.	4.4	4
47	Interplay of Solid–Liquid Interactions and Anisotropic Aggregation in Solution: The Case Study of î³-AlOOH Crystallites. Journal of Physical Chemistry C, 2021, 125, 26049-26060.	3.1	4
48	Risk Analysis and Technology Assessment of Emerging (Gd,Ce)2O2S Multifunctional Nanoparticles: An Attempt for Early Safer-by-Design Approach. Nanomaterials, 2022, 12, 422.	4.1	2
49	Theoretical ab initio study of Xenon pentafluoride anion. Mechanism of Xenon pseudorotation. Chemical Physics Letters, 2002, 363, 505-508.	2.6	1
50	Sol—Gel Synthesis of Li1+αV3O8. Part 1. From Precursors to Xerogel ChemInform, 2005, 36, no.	0.0	0
51	51V and 133Cs MAS NMR Investigation of Crystalline Trivanadate and Hexavanadate Phases Materials Research Society Symposia Proceedings, 2006, 984, 1.	0.1	O