List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1441930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice. Science, 2011, 334, 1573-1577.	6.0	1,159
2	Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine, 2014, 20, 1301-1309.	15.2	823
3	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	2.1	686
4	Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells. Immunity, 2013, 38, 729-741.	6.6	572
5	Regulation of Autophagy by Cytosolic Acetyl-Coenzyme A. Molecular Cell, 2014, 53, 710-725.	4.5	412
6	Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance. Cancer Cell, 2016, 30, 147-160.	7.7	410
7	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
8	Cardiac Glycosides Exert Anticancer Effects by Inducing Immunogenic Cell Death. Science Translational Medicine, 2012, 4, 143ra99.	5.8	367
9	Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science, 2015, 350, 972-978.	6.0	367
10	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	2.2	317
11	Mitochondrial gateways to cancer. Molecular Aspects of Medicine, 2010, 31, 1-20.	2.7	239
12	Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. OncoImmunology, 2015, 4, e1008866.	2.1	237
13	Trial watch: IDO inhibitors in cancer therapy. Oncolmmunology, 2014, 3, e957994.	2.1	223
14	Regulation of autophagy by stress-responsive transcription factors. Seminars in Cancer Biology, 2013, 23, 310-322.	4.3	215
15	Trial watch. Oncolmmunology, 2012, 1, 1323-1343.	2.1	203
16	Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncolmmunology, 2012, 1, 894-907.	2.1	194
17	Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nature Communications, 2019, 10, 1486.	5.8	189

18 Trial Watch. Oncolmmunology, 2012, 1, 699-739.

2.1 184

#	Article	IF	CITATIONS
19	Crosstalk between ER stress and immunogenic cell death. Cytokine and Growth Factor Reviews, 2013, 24, 311-318.	3.2	177
20	Trial watch. Oncolmmunology, 2013, 2, e24612.	2.1	175
21	Trial watch. Oncolmmunology, 2013, 2, e23510.	2.1	153
22	Trial watch. Oncolmmunology, 2012, 1, 1111-1134.	2.1	152
23	Trial watch. Oncolmmunology, 2013, 2, e25771.	2.1	150
24	Trial watch: STING agonists in cancer therapy. Oncolmmunology, 2020, 9, 1777624.	2.1	148
25	Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncolmmunology, 2016, 5, e1149673.	2.1	136
26	Trial Watch. Oncolmmunology, 2014, 3, e27878.	2.1	134
27	Trial Watch. Oncolmmunology, 2013, 2, e25238.	2.1	132
28	Trial watch. Oncolmmunology, 2013, 2, e23082.	2.1	130
29	Prognostic Impact of Vitamin B6 Metabolism in Lung Cancer. Cell Reports, 2012, 2, 257-269.	2.9	122
30	Trial watch: TLR3 agonists in cancer therapy. Oncolmmunology, 2020, 9, 1771143.	2.1	116
31	Screening of novel immunogenic cell death inducers within the NCI Mechanistic Diversity Set. Oncolmmunology, 2014, 3, e28473.	2.1	112
32	Trial watch. Oncolmmunology, 2012, 1, 1557-1576.	2.1	110
33	Effects of vitamin B6 metabolism on oncogenesis, tumor progression and therapeutic responses. Oncogene, 2013, 32, 4995-5004.	2.6	108
34	Trial watch. Oncolmmunology, 2012, 1, 179-188.	2.1	104
35	Trial Watch: Monoclonal antibodies in cancer therapy. Oncolmmunology, 2012, 1, 28-37.	2.1	103
36	Trial Watch. Oncolmmunology, 2013, 2, e26621.	2.1	101

#	Article	IF	CITATIONS
37	Trial Watch. Oncolmmunology, 2014, 3, e27297.	2.1	99
38	Trial watch. Oncolmmunology, 2013, 2, e23803.	2.1	92
39	Trial watch. Oncolmmunology, 2013, 2, e22789.	2.1	92
40	Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle, 2012, 11, 3851-3860.	1.3	91
41	Trial watch: IDO inhibitors in cancer therapy. Oncolmmunology, 2020, 9, 1777625.	2.1	91
42	Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy, 2012, 8, 413-415.	4.3	90
43	Anticancer activity of cardiac glycosides. Oncolmmunology, 2012, 1, 1640-1642.	2.1	89
44	Trial Watch. Oncolmmunology, 2012, 1, 493-506.	2.1	86
45	Trial Watch. Oncolmmunology, 2013, 2, e25595.	2.1	83
46	Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death and Differentiation, 2014, 21, 59-68.	5.0	83
47	TumGrowth: An open-access web tool for the statistical analysis of tumor growth curves. Oncolmmunology, 2018, 7, e1462431.	2.1	82
48	Trial Watch. Oncolmmunology, 2014, 3, e29179.	2.1	76
49	ATP-dependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy. Oncolmmunology, 2013, 2, e24568.	2.1	75
50	Trial Watch. Oncolmmunology, 2012, 1, 306-315.	2.1	70
51	Trial Watch. Oncolmmunology, 2014, 3, e27048.	2.1	69
52	Organs on chip approach: a tool to evaluate cancer -immune cells interactions. Scientific Reports, 2017, 7, 12737.	1.6	69
53	Trial Watch: Immunotherapy plus radiation therapy for oncological indications. OncoImmunology, 2016, 5, e1214790.	2.1	64
54	Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. Oncolmmunology, 2020, 9, 1796002.	2.1	63

#	Article	IF	CITATIONS
55	Trial Watch. Oncolmmunology, 2013, 2, e24238.	2.1	58
56	A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncolmmunology, 2019, 8, e1657375.	2.1	56
57	Trial Watch—Immunostimulation with cytokines in cancer therapy. Oncolmmunology, 2016, 5, e1115942.	2.1	52
58	Trial watch. Oncolmmunology, 2014, 3, e29030.	2.1	51
59	Trial Watch: Lenalidomide-based immunochemotherapy. Oncolmmunology, 2013, 2, e26494.	2.1	50
60	The ratio of CD8 ⁺ /FOXP3 T lymphocytes infiltrating breast tissues predicts the relapse of ductal carcinoma <i>in situ</i> . Oncolmmunology, 2016, 5, e1218106.	2.1	50
61	Autophagy induction for the treatment of cancer. Autophagy, 2016, 12, 1962-1964.	4.3	50
62	Negative prognostic impact of regulatory T cell infiltration in surgically resected esophageal cancer post-radiochemotherapy. Oncotarget, 2015, 6, 20840-20850.	0.8	50
63	Trial Watch. Oncolmmunology, 2013, 2, e24850.	2.1	49
64	Coffee induces autophagy in vivo. Cell Cycle, 2014, 13, 1987-1994.	1.3	49
65	Trial watch: Tumor-targeting monoclonal antibodies for oncological indications. Oncolmmunology, 2015, 4, e985940.	2.1	47
66	Impact of Pattern Recognition Receptors on the Prognosis of Breast Cancer Patients Undergoing Adjuvant Chemotherapy. Cancer Research, 2016, 76, 3122-3126.	0.4	47
67	Cell Death Signaling and Anticancer Therapy. Frontiers in Oncology, 2011, 1, 5.	1.3	46
68	Loss-of-function alleles of <i>P2RX7</i> and <i>TLR4</i> fail to affect the response to chemotherapy in non-small cell lung cancer. OncoImmunology, 2012, 1, 271-278.	2.1	36
69	Independent transcriptional reprogramming and apoptosis induction by cisplatin. Cell Cycle, 2012, 11, 3472-3480.	1.3	32
70	Trial Watch. Oncolmmunology, 2014, 3, e28344.	2.1	31
71	A TLR3 Ligand Reestablishes Chemotherapeutic Responses in the Context of FPR1 Deficiency. Cancer Discovery, 2021, 11, 408-423.	7.7	28
72	Metabolomic analyses reveal that anti-aging metabolites are depleted by palmitate but increased by oleate <i>in vivo</i> . Cell Cycle, 2015, 14, 2399-2407.	1.3	27

#	Article	IF	CITATIONS
73	Contribution of annexin A1 to anticancer immunosurveillance. Oncolmmunology, 2019, 8, e1647760.	2.1	27
74	Autocrine signaling of type 1 interferons in successful anticancer chemotherapy. Oncolmmunology, 2015, 4, e988042.	2.1	27
75	Current trends of anticancer immunochemotherapy. Oncolmmunology, 2013, 2, e25396.	2.1	26
76	Vitamin B6 metabolism influences the intracellular accumulation of cisplatin. Cell Cycle, 2013, 12, 417-421.	1.3	26
77	The ambiguous role of FPR1 in immunity and inflammation. Oncolmmunology, 2020, 9, 1760061.	2.1	26
78	Systemic autophagy in the therapeutic response to anthracycline-based chemotherapy. Oncolmmunology, 2019, 8, e1498285.	2.1	25
79	Chemical activation of SAT1 corrects diet-induced metabolic syndrome. Cell Death and Differentiation, 2020, 27, 2904-2920.	5.0	22
80	Inhibition of formyl peptide receptor 1 reduces the efficacy of anticancer chemotherapy against carcinogen-induced breast cancer. Oncolmmunology, 2016, 5, e1139275.	2.1	21
81	Autophagy-mediated metabolic effects of aspirin. Cell Death Discovery, 2020, 6, 129.	2.0	17
82	Yet another pattern recognition receptor involved in the chemotherapy-induced anticancer immune response: Formyl peptide receptor-1. Oncolmmunology, 2016, 5, e1118600.	2.1	14
83	Immunosurveillance in esophageal carcinoma: The decisive impact of regulatory T cells. Oncolmmunology, 2016, 5, e1064581.	2.1	14
84	Fluorescent Biosensors for the Detection of HMGB1 Release. Methods in Molecular Biology, 2013, 1004, 43-56.	0.4	12
85	A major genetic accelerator of cancer diagnosis: rs867228 in FPR1. Oncolmmunology, 2021, 10, 1859064.	2.1	6
86	No impact of cancer and plague-relevant <i>FPR1</i> polymorphisms on COVID-19. Oncolmmunology, 2020, 9, 1857112.	2.1	4
87	A loss-of-function polymorphism in <i>ATG16L1</i> compromises therapeutic outcome in head and neck carcinoma patients. Oncolmmunology, 2022, 11, 2059878.	2.1	3
88	Prognostic Impact of Vitamin B6 Metabolism in Lung Cancer. Cell Reports, 2012, 2, 1472.	2.9	0