List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1441788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boosting corrects a memory B cell defect in SARS-CoV-2 mRNA–vaccinated patients with inflammatory bowel disease. JCI Insight, 2022, 7, .	5.0	5
2	<scp>SARSâ€CoVâ€2</scp> neutralization and serology testing of <scp>COVIDâ€19</scp> convalescent plasma from donors with nonsevere disease. Transfusion, 2021, 61, 17-23.	1.6	25
3	Cutting Edge: Mouse SARS-CoV-2 Epitope Reveals Infection and Vaccine-Elicited CD8 T Cell Responses. Journal of Immunology, 2021, 206, 931-935.	0.8	36
4	Initial determination of COVID-19 seroprevalence among outpatients and healthcare workers in Minnesota using a novel SARS-CoV-2 total antibody ELISA. Clinical Biochemistry, 2021, 90, 15-22.	1.9	19
5	Two sequential activation modules control the differentiation of protective T helper-1 (Th1) cells. Immunity, 2021, 54, 687-701.e4.	14.3	30
6	CD4 ⁺ Memory T-Cell Formation during Type 1 Immune Responses. Cold Spring Harbor Perspectives in Biology, 2021, 13, a038141.	5.5	12
7	MHC class II tetramers engineered for enhanced binding to CD4 improve detection of antigen-specific T cells. Nature Biotechnology, 2021, 39, 943-948.	17.5	14
8	Cutting Edge: Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity. Journal of Immunology, 2021, 207, 376-379.	0.8	124
9	Intranasal Nanoparticle Vaccination Elicits a Persistent, Polyfunctional CD4 T Cell Response in the Murine Lung Specific for a Highly Conserved Influenza Virus Antigen That Is Sufficient To Mediate Protection from Influenza Virus Challenge. Journal of Virology, 2021, 95, e0084121.	3.4	15
10	High-affinity memory B cells induced by SARS-CoV-2 infection produce more plasmablasts and atypical memory B cells than those primed by mRNA vaccines. Cell Reports, 2021, 37, 109823.	6.4	73
11	Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLoS Pathogens, 2021, 17, e1009897.	4.7	49
12	Modulating the quantity of HIV Env-specific CD4 T cell help promotes rare B cell responses in germinal centers. Journal of Experimental Medicine, 2021, 218, .	8.5	35
13	Antigen-Specific CD4+ T Cells Exhibit Distinct Kinetic and Phenotypic Patterns During Primary and Secondary Responses to Infection. Frontiers in Immunology, 2020, 11, 2125.	4.8	7
14	A Thpok-Directed Transcriptional Circuitry Promotes Bcl6 and Maf Expression to Orchestrate T Follicular Helper Differentiation. Immunity, 2019, 51, 465-478.e6.	14.3	30
15	BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. Journal of Experimental Medicine, 2019, 216, 1450-1464.	8.5	22
16	Peptide:MHCII Tetramerâ€Based Cell Enrichment for the Study of Epitopeâ€Specific CD4+T Cells. Current Protocols in Immunology, 2019, 125, e75.	3.6	7
17	TCR Affinity Biases Th Cell Differentiation by Regulating CD25, Eef1e1, and Gbp2. Journal of Immunology, 2019, 202, 2535-2545.	0.8	55
18	Inventories of naive and tolerant mouse CD4 T cell repertoires reveal a hierarchy of deleted and diverted T cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18537-18543.	7.1	23

#	Article	IF	CITATIONS
19	Cutting Edge: T Cell–Dependent Plasmablasts Form in the Absence of Single Differentiated CD4+ T Cell Subsets. Journal of Immunology, 2019, 202, 401-405.	0.8	14
20	Chrysalis: A New Method for High-Throughput Histo-Cytometry Analysis of Images and Movies. Journal of Immunology, 2019, 202, 300-308.	0.8	16
21	Many Th Cell Subsets Have Fas Ligand–Dependent Cytotoxic Potential. Journal of Immunology, 2018, 200, 2004-2012.	0.8	20
22	Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. Journal of Immunology, 2018, 200, 477-482.	0.8	7
23	Regulatory CD4 ⁺ T Cells Recognize Major Histocompatibility Complex Class II Molecule–Restricted Peptide Epitopes of Apolipoprotein B. Circulation, 2018, 138, 1130-1143.	1.6	140
24	Do Memory B Cells Form Secondary Germinal Centers?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029116.	5.5	30
25	Salmonella Persist in Activated Macrophages in T Cell-Sparse Granulomas but Are Contained by Surrounding CXCR3 Ligand-Positioned Th1 Cells. Immunity, 2018, 49, 1090-1102.e7.	14.3	66
26	Enrichment and Quantification of Epitope-specific CD4+ T Lymphocytes using Ferromagnetic Iron-gold and Nickel Nanowires. Scientific Reports, 2018, 8, 15696.	3.3	11
27	Naive B Cells with High-Avidity Germline-Encoded Antigen Receptors Produce Persistent IgM+ and Transient IgG+ Memory B Cells. Immunity, 2018, 48, 1135-1143.e4.	14.3	61
28	Cutting Edge: Adenosine A2a Receptor Signals Inhibit Germinal Center T Follicular Helper Cell Differentiation during the Primary Response to Vaccination. Journal of Immunology, 2017, 198, 623-628.	0.8	19
29	Identification of Natural Regulatory T Cell Epitopes Reveals Convergence on a Dominant Autoantigen. Immunity, 2017, 47, 107-117.e8.	14.3	58
30	Identification of MHC-Bound Peptides from Dendritic Cells Infected with <i>Salmonella enterica</i> Strain SL1344: Implications for a Nontyphoidal <i>Salmonella</i> Vaccine. Journal of Proteome Research, 2017, 16, 298-306.	3.7	19
31	Increased Effector Memory Insulin-Specific CD4+ T Cells Correlate With Insulin Autoantibodies in Patients With Recent-Onset Type 1 Diabetes. Diabetes, 2017, 66, 3051-3060.	0.6	38
32	Regulatory T Cells: A Crisis Averted. Immunity, 2016, 44, 1079-1081.	14.3	3
33	Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature, 2016, 532, 512-516.	27.8	848
34	Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment. Nature Communications, 2016, 7, 11804.	12.8	26
35	Most microbe-specific naÃ ⁻ ve CD4 ⁺ T cells produce memory cells during infection. Science, 2016, 351, 511-514.	12.6	56
36	CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nature Immunology, 2016, 17, 304-314.	14.5	178

#	Article	IF	CITATIONS
37	Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nature Immunology, 2016, 17, 187-195.	14.5	178
38	Cutting Edge: Bcl6-Interacting Corepressor Contributes to Germinal Center T Follicular Helper Cell Formation and B Cell Helper Function. Journal of Immunology, 2015, 194, 5604-5608.	0.8	27
39	The Transcription Factor KLF2 Restrains CD4 + T Follicular Helper Cell Differentiation. Immunity, 2015, 42, 252-264.	14.3	149
40	Apoptosis and antigen affinity limit effector cell differentiation of a single naÃ⁻ve B cell. Science, 2015, 347, 784-787.	12.6	125
41	T Cell Receptor Cross-Reactivity between Similar Foreign and Self Peptides Influences Naive Cell Population Size and Autoimmunity. Immunity, 2015, 42, 95-107.	14.3	144
42	T Cell Receptor Cross-Reactivity between Similar Foreign and Self Peptides Influences Naive Cell Population Size and Autoimmunity. Immunity, 2015, 42, 1212-1213.	14.3	9
43	Chitin Recognition via Chitotriosidase Promotes Pathologic Type-2 Helper T Cell Responses to Cryptococcal Infection. PLoS Pathogens, 2015, 11, e1004701.	4.7	162
44	Calnexin Induces Expansion of Antigen-Specific CD4+ T Cells that Confer Immunity to Fungal Ascomycetes via Conserved Epitopes. Cell Host and Microbe, 2015, 17, 452-465.	11.0	58
45	Cutting Edge: Identification of Autoreactive CD4+ and CD8+ T Cell Subsets Resistant to PD-1 Pathway Blockade. Journal of Immunology, 2015, 194, 3551-3555.	0.8	46
46	The human T ell repertoire grows up. Immunology and Cell Biology, 2015, 93, 601-602.	2.3	4
47	Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b ⁺ dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12782-12787.	7.1	54
48	Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells. Journal of Immunology, 2015, 195, 4028-4037.	0.8	26
49	TCR ITAM multiplicity is required for the generation of follicular helper T-cells. Nature Communications, 2015, 6, 6982.	12.8	27
50	The Neonatal CD4+ T Cell Response to a Single Epitope Varies in Genetically Identical Mice. Journal of Immunology, 2015, 195, 2115-2121.	0.8	7
51	CD4 ⁺ T Cells: Guardians of the Phagosome. Clinical Microbiology Reviews, 2014, 27, 200-213.	13.6	78
52	Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature, 2014, 510, 152-156.	27.8	429
53	TCR signal quantity and quality in CD4+ T cell differentiation. Trends in Immunology, 2014, 35, 591-596.	6.8	129
54	The In Vivo Response of Naive CD4+ T Cells. Journal of Immunology, 2014, 193, 3829-3831.	0.8	2

#	Article	IF	CITATIONS
55	Hapten-specific naÃ ⁻ ve B cells are biomarkers of vaccine efficacy against drugs of abuse. Journal of Immunological Methods, 2014, 405, 74-86.	1.4	29
56	Leo Lefrançois (1956–2013). Immunity, 2013, 39, 415-416.	14.3	0
57	CD4+ T Cell Persistence and Function after Infection Are Maintained by Low-Level Peptide:MHC Class II Presentation. Journal of Immunology, 2013, 190, 2828-2834.	0.8	66
58	Tracking antigen <i>â€</i> specific CD4 ⁺ T cells throughout the course of chronic <i>Leishmania major</i> infection in resistant mice. European Journal of Immunology, 2013, 43, 427-438.	2.9	29
59	Single Naive CD4+ T Cells from a Diverse Repertoire Produce Different Effector Cell Types during Infection. Cell, 2013, 153, 785-796.	28.9	417
60	PD-1, but Not PD-L1, Expressed by Islet-Reactive CD4+ T Cells Suppresses Infiltration of the Pancreas During Type 1 Diabetes. Diabetes, 2013, 62, 2859-2869.	0.6	64
61	Leo Lefrançois, Jr., Ph.D. (AAI '84) 1956–2013. Journal of Immunology, 2013, 191, 2853-2854.	0.8	0
62	Cutting Edge: Type 1 Diabetes Occurs despite Robust Anergy among Endogenous Insulin-Specific CD4 T Cells in NOD Mice. Journal of Immunology, 2013, 191, 4913-4917.	0.8	39
63	Response to Comment on "The Role of Naive T Cell Precursor Frequency and Recruitment in Dictating Immune Response Magnitude― Journal of Immunology, 2013, 190, 1896-1896.	0.8	2
64	Pillars article: visualization of Peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity. 1994. 1: 327-339. Journal of Immunology, 2013, 191, 5327-39.	0.8	2
65	Temporal Expression of Bacterial Proteins Instructs Host CD4 T Cell Expansion and Th17 Development. PLoS Pathogens, 2012, 8, e1002499.	4.7	73
66	The Role of Naive T Cell Precursor Frequency and Recruitment in Dictating Immune Response Magnitude. Journal of Immunology, 2012, 188, 4135-4140.	0.8	280
67	Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7847-7852.	7.1	93
68	A germinal center–independent pathway generates unswitched memory B cells early in the primary response. Journal of Experimental Medicine, 2012, 209, 597-606.	8.5	321
69	Arthritogenic Self-Reactive CD4+ T Cells Acquire an FR4hiCD73hi Anergic State in the Presence of Foxp3+ Regulatory T Cells. Journal of Immunology, 2012, 188, 170-181.	0.8	80
70	CD28 Promotes CD4+ T Cell Clonal Expansion during Infection Independently of Its YMNM and PYAP Motifs. Journal of Immunology, 2012, 189, 2909-2917.	0.8	25
71	Deletion and anergy of polyclonal B cells specific for ubiquitous membrane-bound self-antigen. Journal of Experimental Medicine, 2012, 209, 2065-2077.	8.5	146
72	Heterogeneity in the differentiation and function of memory B cells. Trends in Immunology, 2012, 33, 590-597.	6.8	63

#	Article	IF	CITATIONS
73	The Transcription Factors Thpok and LRF Are Necessary and Partly Redundant for T Helper Cell Differentiation. Immunity, 2012, 37, 622-633.	14.3	39
74	Different B Cell Populations Mediate Early and Late Memory During an Endogenous Immune Response. Science, 2011, 331, 1203-1207.	12.6	475
75	Quantitative impact of thymic selection on Foxp3 ⁺ and Foxp3 ^{â^`} subsets of self-peptide/MHC class II-specific CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14602-14607.	7.1	104
76	Opposing Signals from the Bcl6 Transcription Factor and the Interleukin-2 Receptor Generate T Helper 1 Central and Effector Memory Cells. Immunity, 2011, 35, 583-595.	14.3	378
77	408 Inflammatory and Suppressive Graft Antigen-Specific CD4+ T Cells Co-Exist in Heart Allografts. Journal of Heart and Lung Transplantation, 2011, 30, S139-S140.	0.6	0
78	Origins of CD4+ effector and central memory T cells. Nature Immunology, 2011, 12, 467-471.	14.5	325
79	On the trail of arthritogenic T cells. Arthritis and Rheumatism, 2011, 63, 2851-2853.	6.7	2
80	CD4+ memory T cell survival. Current Opinion in Immunology, 2011, 23, 319-323.	5.5	40
81	Robust Antigen Specific Th17 T Cell Response to Group A Streptococcus Is Dependent on IL-6 and Intranasal Route of Infection. PLoS Pathogens, 2011, 7, e1002252.	4.7	87
82	Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nature Immunology, 2010, 11, 83-89.	14.5	247
83	Distinct functions of antigen-specific CD4 T cells during murine <i>Mycobacterium tuberculosis </i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19408-19413.	7.1	163
84	Negative Selection and Peptide Chemistry Determine the Size of Naive Foreign Peptide–MHC Class II-Specific CD4+ T Cell Populations. Journal of Immunology, 2010, 185, 4705-4713.	0.8	39
85	A Protease-Dependent Mechanism for Initiating T-Dependent B Cell Responses to Large Particulate Antigens. Journal of Immunology, 2010, 184, 3609-3617.	0.8	42
86	CD4+CD25+Foxp3+ Regulatory T Cells Optimize Diversity of the Conventional T Cell Repertoire during Reconstitution from Lymphopenia. Journal of Immunology, 2010, 184, 4749-4760.	0.8	34
87	On the Composition of the Preimmune Repertoire of T Cells Specific for Peptide–Major Histocompatibility Complex Ligands. Annual Review of Immunology, 2010, 28, 275-294.	21.8	212
88	Positive selection optimizes the number and function of MHCII-restricted CD4 ⁺ T cell clones in the naive polyclonal repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11241-11245.	7.1	39
89	Tracking epitope-specific T cells. Nature Protocols, 2009, 4, 565-581.	12.0	263
90	Dendritic Cell Antigen Presentation Drives Simultaneous Cytokine Production by Effector and Regulatory T Cells in Inflamed Skin. Immunity, 2009, 30, 277-288.	14.3	140

#	Article	IF	CITATIONS
91	Imaging the immune system. Immunological Reviews, 2008, 221, 5-6.	6.0	5
92	Linked T Cell Receptor and Cytokine Signaling GovernÂthe Development of the Regulatory T Cell Repertoire. Immunity, 2008, 28, 112-121.	14.3	356
93	Proliferating CD4+ T Cells Undergo Immediate Growth Arrest upon Cessation of TCR Signaling In Vivo. Journal of Immunology, 2008, 180, 156-162.	0.8	23
94	Phenotypic similarities of anergic and regulatory T cells. FASEB Journal, 2008, 22, 848.34.	0.5	0
95	CD28 enhances in vivo clonal expansion by CD4+ T cells without increasing sensitivity to antigen. FASEB Journal, 2008, 22, 846.11.	0.5	0
96	Surface antigens are rapidly separated from bacteriumâ€sized microspheres in the subcapsular sinus and acquired by antigenâ€specific follicular B cells. FASEB Journal, 2008, 22, 1067.5.	0.5	0
97	The naÃ ⁻ ve CD8+ T cell pool contains a variable frequency of memory phenotype T cells bearing the signature of homeostatic expansion. FASEB Journal, 2008, 22, 355-355.	0.5	3
98	Parker B. Francis Lectureship. Migration and Accumulation of Effector CD4+ T Cells in Nonlymphoid Tissues. Proceedings of the American Thoracic Society, 2007, 4, 439-442.	3.5	19
99	CCR6-dependent recruitment of blood phagocytes is necessary for rapid CD4 T cell responses to local bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12075-12080.	7.1	42
100	The Humoral Immune Response Is Initiated in Lymph Nodes by B Cells that Acquire Soluble Antigen Directly in the Follicles. Immunity, 2007, 26, 491-502.	14.3	331
101	Naive CD4+ T Cell Frequency Varies for Different Epitopes and Predicts Repertoire Diversity and Response Magnitude. Immunity, 2007, 27, 203-213.	14.3	857
102	146: IFN-Î ³ production by graft antigen specific CD4+ T cells is not required for the development of intimal hyerplasia. Journal of Heart and Lung Transplantation, 2007, 26, S112.	0.6	0
103	Delayed gratification: A program of intimal hyperplasia progresses even as graft antigen-specific CD4+ T cells subside. Journal of the American College of Surgeons, 2007, 205, S101.	0.5	0
104	CD154+ Graft Antigen-Specific CD4+ T Cells are Sufficient for Chronic Rejection of Minor Antigen Incompatible Heart Grafts. American Journal of Transplantation, 2006, 6, 1312-1319.	4.7	8
105	CD4+ T cells that enter the draining lymph nodes after antigen injection participate in the primary response and become central–memory cells. Journal of Experimental Medicine, 2006, 203, 1045-1054.	8.5	139
106	Naive and Memory CD4+ T Cell Survival Controlled by Clonal Abundance. Science, 2006, 312, 114-116.	12.6	316
107	CD25+Foxp3+ Regulatory T Cells Facilitate CD4+ T Cell Clonal Anergy Induction during the Recovery from Lymphopenia. Journal of Immunology, 2006, 176, 5880-5889.	0.8	24

Adjuvants and the Initiation of T-Cell Responses. , 2006, , 49-67.

#	Article	IF	CITATIONS
109	In Vivo Assessment of the Relative Contributions of Deletion, Anergy, and Editing to B Cell Self-Tolerance. Journal of Immunology, 2005, 175, 909-916.	0.8	74
110	Tracking immune responses in vivo. Arthritis Research, 2005, 7, S5.	2.0	0
111	Indirect Minor Histocompatibility Antigen Presentation by Allograft Recipient Cells in the Draining Lymph Node Leads to the Activation and Clonal Expansion of CD4+ T Cells That Cause Obliterative Airways Disease. Journal of Immunology, 2004, 172, 3469-3479.	0.8	46
112	In vivo antigen presentation. Current Opinion in Immunology, 2004, 16, 120-125.	5.5	78
113	IL-1 acts on antigen-presenting cells to enhance thein vivo proliferation of antigen-stimulated naive CD4 T cells via a CD28-dependent mechanism that does not involve increased expression of CD28 ligands. European Journal of Immunology, 2004, 34, 1085-1090.	2.9	34
114	Primary induction of CD4 T cell responses in nasal associated lymphoid tissue during group A streptococcal infection. European Journal of Immunology, 2004, 34, 2843-2853.	2.9	44
115	Visualizing the First 50 Hr of the Primary Immune Response to a Soluble Antigen. Immunity, 2004, 21, 341-347.	14.3	175
116	Development of a Novel Transgenic Mouse for the Study of Interactions Between CD4 and CD8 T Cells During Graft Rejection. American Journal of Transplantation, 2003, 3, 1355-1362.	4.7	175
117	Whole-body analysis of T cell responses. Current Opinion in Immunology, 2003, 15, 366-371.	5.5	20
118	Antigen presentation to naive CD4 T cells in the lymph node. Nature Immunology, 2003, 4, 733-739.	14.5	408
119	Distinct Dendritic Cell Populations Sequentially Present Antigen to CD4 T Cells and Stimulate Different Aspects of Cell-Mediated Immunity. Immunity, 2003, 19, 47-57.	14.3	646
120	Preferential Accumulation of Antigen-specific Effector CD4 T Cells at an Antigen Injection Site Involves CD62E-dependent Migration but Not Local Proliferation. Journal of Experimental Medicine, 2003, 197, 751-762.	8.5	137
121	Visualization of the Genesis and Fate of Isotype-switched B Cells during a Primary Immune Response. Journal of Experimental Medicine, 2003, 197, 1677-1687.	8.5	126
122	In Situ Analysis Reveals Physical Interactions Between CD11b+ Dendritic Cells and Antigen-Specific CD4 T Cells After Subcutaneous Injection of Antigen. Journal of Immunology, 2002, 169, 2247-2252.	0.8	90
123	Flow Cytometric Analysis of T Cell Receptor Signal Transduction. Science Signaling, 2002, 2002, pl5-pl5.	3.6	8
124	Tracking Salmonella-Specific CD4 T Cells In Vivo Reveals a Local Mucosal Response to a Disseminated Infection. Immunity, 2002, 16, 365-377.	14.3	216
125	INVIVOACTIVATION OFANTIGEN-SPECIFICCD4 T CELLS. Annual Review of Immunology, 2001, 19, 23-45.	21.8	463
126	Dendritic cell longevity and T cell persistence is controlled by CD154-CD40 interactions. European Journal of Immunology, 2001, 31, 959-965.	2.9	121

#	Article	IF	CITATIONS
127	Visualizing the generation of memory CD4 T cells in the whole body. Nature, 2001, 410, 101-105.	27.8	963
128	Single-cell analysis of signal transduction in CD4 T cells stimulated by antigen in vivo. Proceedings of the United States of America, 2001, 98, 10805-10810.	7.1	74
129	Cutting Edge: In Vivo Identification of TCR Redistribution and Polarized IL-2 Production by Naive CD4 T Cells. Journal of Immunology, 2001, 166, 4278-4281.	0.8	74
130	Antibody Is Required for Protection against Virulent but Not Attenuated Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2000, 68, 3344-3348.	2.2	177
131	Characterization of CD4+ T Cell Responses During Natural Infection with <i>Salmonella typhimurium</i> . Journal of Immunology, 2000, 164, 986-993.	0.8	215
132	Antigen-Experienced CD4 T Cells Display a Reduced Capacity for Clonal Expansion In Vivo That Is Imposed by Factors Present in the Immune Host. Journal of Immunology, 2000, 164, 4551-4557.	0.8	59
133	Clonal Expansion of Antigen-Specific CD4 T Cells following Infection with Salmonella typhimurium Is Similar in Susceptible (Ity s) and Resistant (Ity r) BALB/c Mice. Infection and Immunity, 1999, 67, 2025-2029.	2.2	25
134	Clonal Expansion of Antigen-Specific CD4 T Cells following Infection with Salmonella typhimurium Is Similar in Susceptible (Itys) and Resistant (Ityr) BALB/c Mice. Infection and Immunity, 1999, 67, 2025-2029.	2.2	4
135	Self-Reactive B Lymphocytes Overexpressing Bcl-xL Escape Negative Selection and Are Tolerized by Clonal Anergy and Receptor Editing. Immunity, 1998, 9, 35-45.	14.3	118
136	Visualization of Specific B and T Lymphocyte Interactions in the Lymph Node. Science, 1998, 281, 96-99.	12.6	683
137	A Natural Immunological Adjuvant Enhances T Cell Clonal Expansion through a CD28-dependent, Interleukin (IL)-2–independent Mechanism. Journal of Experimental Medicine, 1998, 187, 225-236.	8.5	206
138	Prevention of Peripheral Tolerance by a Dendritic Cell Growth Factor: Flt3 Ligand as an Adjuvant. Journal of Experimental Medicine, 1998, 188, 2075-2082.	8.5	104
139	Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1154-1159.	7.1	211
140	Antigen‧pecific CD4 ⁺ T Cells that Survive after the Induction of Peripheral Tolerance Possess an Intrinsic Lymphokine Production Defect. Novartis Foundation Symposium, 1998, 215, 103-119.	1.1	7
141	In Vivo Detection of Dendritic Cell Antigen Presentation to CD4+ T Cells. Journal of Experimental Medicine, 1997, 185, 2133-2141.	8.5	510
142	MURINE LYMPHOTACTIN: GENE STRUCTURE, POST-TRANSLATIONAL MODIFICATION AND INHIBITION OF EXPRESSION BY CD28 COSTIMULATION. Cytokine, 1997, 9, 375-382.	3.2	18
143	Use of adoptive transfer of T-cell antigen-receptor-transgenic T cells for the study of T-cell activation in vivo. Immunological Reviews, 1997, 156, 67-78.	6.0	191
144	Autoimmunity: When self-tolerance breaks down. Current Biology, 1997, 7, R255-R257.	3.9	13

#	Article	IF	CITATIONS
145	Studying Immunological Tolerance by Physically Monitoring Antigen-specific T Cells in Vivoa. Annals of the New York Academy of Sciences, 1996, 778, 72-79.	3.8	7
146	The anatomy of T-cell activation and tolerance Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2245-2252.	7.1	209
147	Molecular mechanisms underlying functional T-cell unresponsiveness. Current Opinion in Immunology, 1995, 7, 375-381.	5.5	378
148	Accumulation of Sequence-specific RNA-binding Proteins in the Cytosol of Activated T Cells Undergoing RNA Degradation and Apoptosis. Journal of Biological Chemistry, 1995, 270, 26593-26601.	3.4	27
149	Surface proteins involved in T cell costimulation. Journal of Leukocyte Biology, 1994, 55, 805-815.	3.3	95
150	Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity, 1994, 1, 327-339.	14.3	900
151	Minireview The role of anergy in peripheral T cell unresponsiveness. Life Sciences, 1994, 55, 1767-1780.	4.3	27
152	The ups and downs of T cell costimulation. Immunity, 1994, 1, 443-446.	14.3	239
153	Antigen-Presenting Cell Regulation of T Cell Activation. , 1994, , 143-158.		0
154	The murine immune response to the male-specific antigen mouse testicular cytochromec. European Journal of Immunology, 1993, 23, 1992-1998.	2.9	0
155	Molecules involved in T-cell costimulation. Current Opinion in Immunology, 1993, 5, 361-367.	5.5	214
156	Accessory cell-derived signals required for T cell activation. Immunologic Research, 1993, 12, 48-64.	2.9	39
157	A single amino acid substitution in a cytochrome c T cell stimulatory peptide changes the MHC restriction element from one isotype (I-Ak) to another (I-Ek). Molecular Immunology, 1993, 30, 569-575.	2.2	2
158	Costimulating Factors and Signals Relevant for Antigen Presenting Cell Function. Advances in Experimental Medicine and Biology, 1993, 329, 87-92.	1.6	10
159	Self-reactive T cells are present in the peripheral lymphoid tissues of cyclosporin A-treated mice. International Immunology, 1992, 4, 1341-1349.	4.0	24
160	Memory and anergy: challenges to traditional models of T lymphocyte differentiation. FASEB Journal, 1992, 6, 2428-2433.	0.5	28
161	Co-Stimulatory Functions of Antigen-Presenting Cells. Journal of Investigative Dermatology, 1992, 99, S62-S65.	0.7	14
162	The role of cell division in the induction of clonal anergy. Trends in Immunology, 1992, 13, 69-73.	7.5	196

#	Article	IF	CITATIONS
163	nef-naf nexus?. Current Biology, 1992, 2, 130-132.	3.9	6
164	Accessory Cell-Derived Costimulatory Signals Regulate T Cell Proliferation. Annals of the New York Academy of Sciences, 1991, 636, 33-42.	3.8	8
165	A monoclonal antibody specific for a cytochromec T cell stimulatory peptide inhibits T cell responses and affects the way the peptide associates with antigen-presenting cells. European Journal of Immunology, 1991, 21, 143-151.	2.9	33
166	Induction and Maintenance of Anergy in Mature T Cells. Advances in Experimental Medicine and Biology, 1991, 292, 167-176.	1.6	55
167	Clonal Expansion Versus Functional Clonal Inactivation: A Costimulatory Signalling Pathway Determines the Outcome of T Cell Antigen Receptor Occupancy. Annual Review of Immunology, 1989, 7, 445-480.	21.8	1,430
168	Effects of cyclosporine A on T cell development and clonal deletion. Science, 1988, 241, 1655-1658.	12.6	335
169	Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo Journal of Experimental Medicine, 1987, 165, 302-319.	8.5	1,085
170	Molecular events in the induction of a nonresponsive state in interleukin 2-producing helper T-lymphocyte clones Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 5409-5413.	7.1	289
171	T-Cell Unresponsiveness in vivo and in vitro: Fine Specificity of Induction and Molecular Characterization of the Unresponsive State. Immunological Reviews, 1987, 95, 113-135.	6.0	185
172	Mechanisms of genetic control of immune responses. Immunogenetics, 1986, 23, 292-301.	2.4	4
173	In vivo effects of GK1.5 (anti-L3T4a) monoclonal antibody on induction and expression of delayed-type hypersensitivity. Cellular Immunology, 1985, 92, 414-426.	3.0	64
174	Immunoregulatory Pathways in Adult Responder Mice Scandinavian Journal of Immunology, 1984, 19, 501-512.	2.7	9