List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1441670/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eye Movement Alterations in Post-COVID-19 Condition: A Proof-of-Concept Study. Sensors, 2022, 22, 1481.	3.8	9
2	Cable-Driven Robot to Simulate the Buoyancy Force for Improving the Performance of Underwater Robots. Mechanisms and Machine Science, 2021, , 413-425.	0.5	1
3	An Intelligent Algorithm for Decision Making System and Control of the GEMMA Guide Paradigm Using the Fuzzy Petri Nets Approach. Electronics (Switzerland), 2021, 10, 489.	3.1	3
4	Proposal of a Decoupled Structure of Fuzzy-PID Controllers Applied to the Position Control in a Planar CDPR. Electronics (Switzerland), 2021, 10, 745.	3.1	7
5	Passive reconfigurable end effector for underwater simulation on humanoids. Mechanism and Machine Theory, 2021, 163, 104387.	4.5	0
6	A Simulation Study of a Planar Cable-Driven Parallel Robot to Transport Supplies for Patients with Contagious Diseases in Health Care Centers. Robotics, 2021, 10, 111.	3.5	3
7	ALICE: Conceptual Development of a Lower Limb Exoskeleton Robot Driven by an On-Board Musculoskeletal Simulator. Sensors, 2020, 20, 789.	3.8	23
8	El exoesqueleto de rehabilitación de la marcha ALICE: análisis dinámico y evaluación del sistema de control utilizando cuaternios de Hamilton. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2020, 18, 48.	1.0	4
9	Rotational Workspace Expansion of a Planar CDPR with a Circular End-Effector Mechanism Allowing Passive Reconfiguration. Robotics, 2019, 8, 57.	3.5	2
10	Dynamic Walking of a Legged Robot in Underwater Environments. Sensors, 2019, 19, 3588.	3.8	8
11	Experimental and Computational Methodology for the Determination of Hydrodynamic Coefficients Based on Free Decay Test: Application to Conception and Control of Underwater Robots. Sensors, 2019, 19, 3631.	3.8	19
12	A Sensor Based on a Spherical Parallel Mechanism for the Measurement of Fluid Velocity: Experimental Development. IEEE Access, 2019, 7, 16145-16154.	4.2	4
13	Cables Configuration Analysis for a planar CDPR, based on the Lowest Kinematic Energy for a Rotation Movement. , 2019, , .		0
14	Modeling and Oscillations Control of a Planar Parallel Robot Subsystem Activated by Cable. , 2019, , .		0
15	Potential Energy Distribution of Redundant Cable-Driven Robot Applied to Compliant Grippers: Method and Computational Analysis. Sensors, 2019, 19, 3403.	3.8	5
16	Robotics for Seabed Teleoperation: Part-1–Conception and Practical Implementation of a Hybrid Seabed Robot. IEEE Access, 2018, 6, 60559-60569.	4.2	13
17	Cable-Driven Parallel Robot with Reconfigurable End Effector Controlled with a Compliant Actuator. Sensors, 2018, 18, 2765.	3.8	12
18	A Sensor Based on a Spherical Parallel Mechanism for the Measurement of Fluid Velocity: Physical Modelling and Computational Analysis. Sensors, 2018, 18, 2867.	3.8	3

#	Article	IF	CITATIONS
19	ORTE: Robot for Upper Limb Rehabilitation. Biomechanical Analysis of Human Movements. IEEE Latin America Transactions, 2018, 16, 1638-1643.	1.6	5
20	Shoulder assessment methodology, clinical studies and SOFI rehabilitation exoskeleton. Robotics and Autonomous Systems, 2017, 94, 264-281.	5.1	1
21	Experimental Identification of Lu-Gre Friction Model in an Hydraulic Actuator. Lecture Notes in Networks and Systems, 2017, , 133-143.	0.7	2
22	Modeling and Simulation of Upper Brachial Plexus Injury. IEEE Systems Journal, 2016, 10, 912-921.	4.6	14
23	Robustness analysis of a PI controller for a hydraulic actuator. Control Engineering Practice, 2015, 43, 94-108.	5.5	17
24	State convergence theory applied to a nonlinear and delayed telerobotic system. Journal of Engineering Mathematics, 2015, 91, 193-210.	1.2	2
25	Skeletal Modeling, Analysis and Simulation of Upper Limb of Human Shoulder under Brachial Plexus Injury. Advances in Intelligent Systems and Computing, 2014, , 195-207.	0.6	3
26	Design and kinematic analysis of 3PSS-1S wrist for needle insertion guidance. Robotics and Autonomous Systems, 2013, 61, 417-427.	5.1	13
27	A cooperative multi-agent robotics system: Design and modelling. Expert Systems With Applications, 2013, 40, 4737-4748.	7.6	28
28	Stability analysis of teleoperation system by state convergence with variable time delay. , 2013, , .		2
29	Control of a teleoperation system by state convergence with variable time delay. , 2012, , .		Ο
30	Dimensional synthesis of a spherical parallel manipulator based on the evaluation of global performance indexes. Robotics and Autonomous Systems, 2012, 60, 1037-1045.	5.1	29
31	Design and modeling of the multi-agent robotic system: SMART. Robotics and Autonomous Systems, 2012, 60, 143-153.	5.1	13
32	Kinematic analysis of a novel 2-d.o.f. orientation device. Robotics and Autonomous Systems, 2012, 60, 852-861.	5.1	12
33	Design of a CMG for underwater robots. , 2011, , .		1
34	Control of a nonlinear teleoperation system by state convergence. , 2011, , .		8
35	Robot based on task-space dynamical model. IET Control Theory and Applications, 2011, 5, 2111-2119.	2.1	6
36	ROAD: domestic assistant and rehabilitation robot. Medical and Biological Engineering and Computing, 2011, 49, 1201-1211.	2.8	35

#	Article	IF	CITATIONS
37	Experiences and results from designing and developing a 6 DoF underwater parallel robot. Robotics and Autonomous Systems, 2011, 59, 101-112.	5.1	20
38	Kinematic analysis of an Underwater Parallel Robot. , 2011, , .		0
39	Experiences in the development of a teleoperated parallel robot for aerial line maintenance. Robotica, 2011, 29, 873-881.	1.9	2
40	Hybrid Position-Force Control of Climbing Parallel Robot Using Electrohydraulic Servo Actuators. , 2011, , .		0
41	OPTIMAL ANALYSIS OF A TELEOPERATED SYSTEM WITH AN ADAPTATIVE CONTROLLER. International Journal of Robotics and Automation, 2011, 26, .	0.1	Ο
42	Kinematics of a robotic 3UPS1S spherical wrist designed for laparoscopic applications. International Journal of Medical Robotics and Computer Assisted Surgery, 2010, 6, 291-300.	2.3	33
43	Robotic Strategies to Assist Pilots in Landing and Takeoff of Helicopters on Ships and Offshore. , 2010, , .		Ο
44	Robust adaptive control of the Stewart-Gough robot in the task space. , 2010, , .		8
45	MOTION STRATEGY FOR THE TREPA CLIMBING ROBOT ON A METALLIC ORTHOGONAL STRUCTURE. , 2010, , .		1
46	Desarrollo de un Interfaz de Realidad Virtual para los Robots Multiagentes Smart. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2010, 7, 17-27.	1.0	2
47	Diseño de un Controlador HÃbrido en Ambientes Virtuales para Teleoperación. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2010, 7, 53-62.	1.0	0
48	Electronic schuko socket for electrical energy saving. , 2009, , .		0
49	Underwater Parallel Robot for oceanic measuring and observations-REMO I: development and navigation control advances. , 2009, , .		4
50	Implementation of Decoupled Model-Based Controller in a 2-DOF Pneumatic Platform Used in Low-Cost Driving Simulators. , 2009, , .		5
51	Advances in developing telemanipulators for an underwater robot - Remo II. , 2009, , .		0
52	Concepción, Desarrollo y Avances en el Control de Navegación de Robots Submarinos Paralelos: El Robot Remo-I. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2009, 6, 92-100.	1.0	10
53	HAPTIC CONTROL FOR THE TELEOPERATION OF A CLIMBING PARALLEL ROBOT. , 2009, , .		0
54	An Active helideck testbed for floating structures based on a Stewart-Gough platform. , 2008, , .		19

#	Article	IF	CITATIONS
55	Teleoperation of a Robot Using a Haptic Device with Different Kinematics. Lecture Notes in Computer Science, 2008, , 181-186.	1.3	5
56	COMPUTATIONAL COST OF TWO FORWARD KINEMATIC MODELS FOR A S-G BASED CLIMBING ROBOT. , 2008, , .		0
57	TELEOPERATION OF A MANIPULATOR WITH A MASTER ROBOT OF DIFFERENT KINEMATICS: USING BILATERAL CONTROL BY STATE CONVERGENCE. , 2008, , .		0
58	Field and service applications - Exploring deep sea by teleoperated robot - An Underwater Parallel Robot with High Navigation Capabilities. IEEE Robotics and Automation Magazine, 2007, 14, 65-75.	2.0	32
59	A Novel Parallel Haptic Interface for Telerobotic Systems. , 2007, , 45-59.		3
60	Performance evaluation of spherical parallel platforms for humanoid robots. Robotica, 2006, 25, 257-267.	1.9	18
61	Teleoperated parallel climbing robots in nuclear installations. Industrial Robot, 2006, 33, 381-386.	2.1	27
62	A climbing parallel robot: a robot to climb along tubular and metallic structures. IEEE Robotics and Automation Magazine, 2006, 13, 16-22.	2.0	66
63	Visual Control of robots with changes of visibility in image features. IEEE Latin America Transactions, 2006, 4, 27-33.	1.6	6
64	Magister-P; a 6-URS parallel haptic device with open control architecture. Robotica, 2005, 23, 177-187.	1.9	10
65	Climbing parallel robot: a computational and experimental study of its performance around structural nodes. , 2005, 21, 1056-1066.		29
66	RoboTenis: optimal design of a parallel robot with high performance. , 2005, , .		17
67	Analysis of a Climbing Parallel Robot for Construction Applications. Computer-Aided Civil and Infrastructure Engineering, 2004, 19, 436-445.	9.8	2
68	Design, modelling and implementation of a 6 URS parallel haptic device. Robotics and Autonomous Systems, 2004, 47, 1-10.	5.1	20
69	Parallel robots for autonomous climbing along tubular structures. Robotics and Autonomous Systems, 2003, 42, 125-134.	5.1	52
70	Motion planning of a climbing parallel robot. IEEE Transactions on Automation Science and Engineering, 2003, 19, 485-489.	2.3	73
71	Kinematic Control for Navigation of Mobile Parallel Robots Applied to Large Structures. , 2000, , .		4

Robot assembly system for the construction process automation. , 0, , .

24

#	Article	IF	CITATIONS
73	Kinematics control of a 6 URS parallel platform working as an impedance display. , 0, , .		Ο
74	RoboTenis: design, dynamic modeling and preliminary control. , 0, , .		7
75	Design and analysis of a spherical humanoid neck using screw theory. , 0, , .		3
76	Design of the robot-cub (iCub) head. , 0, , .		116