Cuie Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1441064/publications.pdf

Version: 2024-02-01

324 papers 15,958 citations

63 h-index 23533 111 g-index

327 all docs

327 docs citations

327 times ranked

13648 citing authors

#	Article	IF	CITATIONS
1	Surface modification of additively manufactured metallic biomaterials with active antipathogenic properties., 2023, 1, 100001.		10
2	Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties, tissue engineering viability, and enhanced biocompatibility. , 2023, 1 , 100004 .		11
3	Biodegradable metallic suture anchors: A review. , 2023, 1, 100005.		4
4	Mechanical and corrosion properties of graphene nanoplatelet–reinforced Mg–Zr and Mg–Zr–Zn matrix nanocomposites for biomedical applications. Journal of Magnesium and Alloys, 2022, 10, 458-477.	11.9	33
5	Mechanical and corrosion properties of extruded Mg–Zr–Sr alloys for biodegradable implant applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142192.	5.6	24
6	In silico and in vivo studies of the effect of surface curvature on the osteoconduction of porous scaffolds. Biotechnology and Bioengineering, 2022, 119, 591-604.	3.3	8
7	In vitro and in vivo assessment of the effect of biodegradable magnesium alloys on osteogenesis. Acta Biomaterialia, 2022, 141, 454-465.	8.3	47
8	Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications. Acta Biomaterialia, 2022, 142, 361-373.	8.3	27
9	A biodegradable Fe/Zn–3Cu composite with requisite properties for orthopedic applications. Acta Biomaterialia, 2022, 146, 506-521.	8.3	12
10	A biodegradable in situ Zn–Mg2Ge composite for bone-implant applications. Acta Biomaterialia, 2022, 146, 478-494.	8.3	16
11	Recent Progress on Nanocrystalline Metallic Materials for Biomedical Applications. Nanomaterials, 2022, 12, 2111.	4.1	15
12	Fatigue and corrosion fatigue behaviors of biodegradable Zn-Li and Zn-Cu-Li under physiological conditions. Journal of Materials Science and Technology, 2022, 131, 48-59.	10.7	7
13	Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4Zr alloys for biomedical applications. Acta Biomaterialia, 2022, 149, 387-398.	8.3	10
14	Additive manufacturing of functionally graded porous titanium scaffolds for dental applications., 2022, 139, 213018.		13
15	Zinc phosphate, zinc oxide, and their dual-phase coatings on pure Zn foam with good corrosion resistance, cytocompatibility, and antibacterial ability for potential biodegradable bone-implant applications. Chemical Engineering Journal, 2022, 450, 137946.	12.7	22
16	A Review of Metal Silicides for Lithium-Ion Battery Anode Application. Acta Metallurgica Sinica (English Letters), 2021, 34, 291-308.	2.9	24
17	Biodegradable Zn–3Cu and Zn–3Cu–0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications. Journal of Materials Science and Technology, 2021, 68, 76-90.	10.7	38
18	Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioactive Materials, 2021, 6, 836-879.	15.6	192

#	Article	IF	Citations
19	High strength porous PLA gyroid scaffolds manufactured via fused deposition modeling for tissue-engineering applications. Smart Materials in Medicine, 2021, 2, 15-25.	6.7	72
20	The influence of Ca and Cu additions on the microstructure, mechanical and degradation properties of Zn–Ca–Cu alloys for absorbable wound closure device applications. Bioactive Materials, 2021, 6, 1436-1451.	15.6	42
21	Improvement of corrosion resistance of H59 brass through fabricating superhydrophobic surface using laser ablation and heating treatment. Corrosion Science, 2021, 180, 109186.	6.6	54
22	Binary Zn–Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity. Journal of Materials Science and Technology, 2021, 74, 216-229.	10.7	46
23	Biodegradable alloys., 2021,, 189-228.		0
24	Titanium alloys. , 2021, , 157-187.		3
25	Biodegradable Znâ^'3Mgâ^'0.7Mg2Si composite fabricated by high-pressure solidification for bone implant applications. Acta Biomaterialia, 2021, 123, 407-417.	8.3	30
26	Development of beta-type Ti-Nb-Zr-Mo alloys for orthopedic applications. Applied Materials Today, 2021, 22, 100968.	4.3	15
27	Individual layer thickness-dependent nanoindentation and nanotribological behaviors of Ta/Co nanolaminates. Tribology International, 2021, 156, 106845.	5.9	7
28	Surface Characterization and Biocompatibility of Hydroxyapatite Coating on Anodized TiO ₂ Nanotubes via PVD Magnetron Sputtering. Langmuir, 2021, 37, 4984-4996.	3.5	18
29	Structural and electrochemical characterization of vanadium-excess Li3V2(PO4)3-LiVOPO4/C composite cathode material synthesized by sol–gel method. Journal of Solid State Electrochemistry, 2021, 25, 2127-2137.	2.5	2
30	Ultra-strong and ductile Ta/Co nanolaminates strengthened via grain-boundary expanding and interfacial sliding. Applied Materials Today, 2021, 23, 100983.	4.3	2
31	Impact of scandium on mechanical properties, corrosion behavior, friction and wear performance, and cytotoxicity of a β-type Ti–24Nb–38Zr–2Mo alloy for orthopedic applications. Acta Biomaterialia, 2021, 134, 791-803.	8.3	19
32	A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Acta Biomaterialia, 2021, 130, 80-97.	8.3	65
33	Disparate micro-mechanical behaviors of adjacent bone lamellae through in situ SEM micropillar compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141903.	5.6	5
34	Aggravated stress fluctuation and mechanical size effects of nanoscale lamellar bone pillars. NPG Asia Materials, $2021,13,.$	7.9	6
35	Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review. Journal of Materials Science and Technology, 2021, 94, 196-215.	10.7	101
36	Microstructure, mechanical and corrosion properties of hot-pressed graphene nanoplatelets-reinforced Mg matrix nanocomposites for biomedical applications. Journal of Alloys and Compounds, 2021, 887, 161379.	5.5	14

#	Article	IF	Citations
37	Recent Progress in Capacity Enhancement of LiFePO4 Cathode for Li-lon Batteries. Journal of Electrochemical Energy Conversion and Storage, $2021,18,.$	2.1	25
38	Nutrient alloying elements in biodegradable metals: a review. Journal of Materials Chemistry B, 2021, 9, 9806-9825.	5.8	8
39	The Application of the Rare Earths to Magnesium and Titanium Metallurgy in Australia. Advanced Materials, 2020, 32, e1901715.	21.0	24
40	Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications. Journal of Materials Science and Technology, 2020, 41, 191-198.	10.7	51
41	Impact of the rare earth elements scandium and yttrium on beta-type Ti-24Nb-38Zr-2Mo-base alloys for orthopedic applications. Materialia, 2020, 9, 100586.	2.7	11
42	Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—A review. Acta Biomaterialia, 2020, 103, 1-23.	8.3	95
43	High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries. Journal of Energy Storage, 2020, 27, 101036.	8.1	98
44	Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants. Acta Biomaterialia, 2020, 102, 481-492.	8.3	102
45	Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Acta Biomaterialia, 2020, 102, 493-507.	8.3	93
46	Biodegradable ternary Zn–3Ge–0.5X (X=Cu, Mg, and Fe) alloys for orthopedic applications. Acta Biomaterialia, 2020, 115, 432-446.	8.3	42
47	Development of biodegradable Zn–1Mg–0.1RE (REÂ=ÂEr, Dy, and Ho) alloys for biomedical applications. Acta Biomaterialia, 2020, 117, 384-399.	8.3	57
48	Powder metallurgy in manufacturing of medical devices. , 2020, , 159-190.		2
49	Nano-tribological behavior of graphene nanoplatelet–reinforced magnesium matrix nanocomposites. Journal of Magnesium and Alloys, 2020, 9, 895-895.	11.9	23
50	Selective laser melting in biomedical manufacturing., 2020,, 235-269.		19
51	Introduction to biomedical manufacturing. , 2020, , 3-29.		2
52	Material selection for medical devices. , 2020, , 31-94.		8
53	Surface modifications of metallic biomaterials. , 2020, , 387-424.		3
54	Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques. Acta Biomaterialia, 2020, 114, 485-496.	8.3	29

#	Article	IF	CITATIONS
55	Study of TiO ₂ -Coated α-Fe ₂ O ₃ Composites and the Oxygen-Defects Effect on the Application as the Anode Materials of High-Performance Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11666-11673.	5.1	19
56	Length-scale dependent deformation, strengthening, and ductility of fcc/fcc Ni/Al nanolaminates using micropillar compression testing. Acta Materialia, 2020, 193, 318-328.	7.9	24
57	A review of high-strength nanolaminates and evaluation of their properties. Journal of Materials Science and Technology, 2020, 50, 215-244.	10.7	47
58	Impact of rare earth elements on nanohardness and nanowear properties of beta-type Ti-24Nb-38Zr-2Mo alloy for medical applications. Materialia, 2020, 12, 100772.	2.7	8
59	HA coating on Mg alloys for biomedical applications: A review. Journal of Magnesium and Alloys, 2020, 8, 929-943.	11.9	104
60	Machinablility of titanium matrix composites (TMC) reinforced with multi-walled carbon nanotubes. Journal of Manufacturing Processes, 2020, 56, 131-146.	5.9	24
61	Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces. Advances in Colloid and Interface Science, 2020, 278, 102136.	14.7	31
62	Realization and characterization of double-layer Ca-P coating on WE43 Mg alloy for biomedical applications. Surface and Coatings Technology, 2020, 398, 126091.	4.8	28
63	Titanium Alloys, Including Nitinol. , 2020, , 229-247.		4
64	Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications. Journal of Magnesium and Alloys, 2020, 8, 269-290.	11.9	87
65	Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. Journal of Alloys and Compounds, 2020, 828, 154461.	5. 5	52
66	A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications. Acta Biomaterialia, 2020, 106, 410-427.	8.3	117
67	Effect of Anodized TiO ₂ –Nb ₂ O ₅ –ZrO ₂ Nanotubes with Different Nanoscale Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy.	8.0	19
68	Cold rolling deformation and annealing behavior of a β-type Ti–34Nb–25Zr titanium alloy for biomedical applications. Journal of Materials Research and Technology, 2020, 9, 2308-2318.	5.8	35
69	Enhanced corrosion resistance via phosphate conversion coating on pure Zn for medical applications. Corrosion Science, 2020, 169, 108602.	6.6	34
70	The manufacturing and the application of polycrystalline diamond tools – A comprehensive review. Journal of Manufacturing Processes, 2020, 56, 400-416.	5.9	56
71	Characterization techniques for metallic biomaterials., 2020,, 517-545.		0
72	Fabrication and properties of newly developed Ti35Zr28Nb scaffolds fabricated by powder metallurgy for bone-tissue engineering. Journal of Materials Research and Technology, 2019, 8, 3696-3704.	5.8	31

#	Article	IF	CITATIONS
73	Novel porous Ti35Zr28Nb scaffolds fabricated by powder metallurgy with excellent osteointegration ability for bone-tissue engineering applications. Materials Science and Engineering C, 2019, 105, 110015.	7.3	44
74	Phase field simulation of spinodal decomposition in Zr–Nb alloys for implant materials. Journal of Applied Physics, 2019, 126, 085102.	2.5	6
75	A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroid scaffolds. Acta Biomaterialia, 2019, 97, 587-596.	8.3	71
76	Novel \hat{I}^2 -Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Acta Biomaterialia, 2019, 87, 273-284.	8.3	85
77	Influence of Heat Treatments on Microstructure and Mechanical Properties of Ti–26Nb Alloy Elaborated In Situ by Laser Additive Manufacturing with Ti and Nb Mixed Powder. Materials, 2019, 12, 61.	2.9	12
78	Porous Ti-10Mo alloy fabricated by powder metallurgy for promoting bone regeneration. Science China Materials, 2019, 62, 1053-1064.	6.3	37
79	Reversible wettability transition between superhydrophilicity and superhydrophobicity through alternate heating-reheating cycle on laser-ablated brass surface. Applied Surface Science, 2019, 492, 349-361.	6.1	52
80	Biocompatibility of Nanoscale Hydroxyapatite Coating on TiO2 Nanotubes. Materials, 2019, 12, 1979.	2.9	7
81	Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Acta Biomaterialia, 2019, 96, 1-19.	8.3	113
82	Morphology and phase structure of nanosized Co powders prepared by one-step reduction combined with high-energy ball milling. Journal of Alloys and Compounds, 2019, 800, 490-497.	5 . 5	4
83	Optimized Fabrication and Characterization of TiO ₂ â€"XrO ₂ Nanotubes on β-Phase TiZr ₃₅ Nb ₂₈ Alloy for Biomedical Applications via the Taguchi Method. ACS Biomaterials Science and Engineering, 2019, 5, 2750-2761.	5.2	12
84	Individual layer thickness-dependent microstructures and mechanical properties of fcc/fcc Ni/Al nanolaminates and their strengthening mechanisms. Materialia, 2019, 6, 100347.	2.7	13
85	Effects of selected metallic and interstitial elements on the microstructure and mechanical properties of beta titanium alloys for orthopedic applications. Materialia, 2019, 6, 100323.	2.7	46
86	Quantitative analysis of cooling and lubricating effects of graphene oxide nanofluids in machining titanium alloy Ti6Al4V. Journal of Materials Processing Technology, 2019, 271, 584-598.	6.3	58
87	Exploring the Role of Manganese on the Microstructure, Mechanical Properties, Biodegradability, and Biocompatibility of Porous Iron-Based Scaffolds. ACS Biomaterials Science and Engineering, 2019, 5, 1686-1702.	5. 2	62
88	Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review. Acta Biomaterialia, 2019, 89, 14-32.	8. 3	118
89	Carbon Nanotubes and Graphene as Nanoreinforcements in Metallic Biomaterials: a Review. Advanced Biology, 2019, 3, e1800212.	3.0	66
90	High-strength Ni/Al nanolaminates fabricated by magnetron sputtering and their nanoindentation and nanowear behaviors. Materialia, 2019, 6, 100263.	2.7	14

#	Article	IF	Citations
91	Effect of thermomechanical treatment on the mechanical and microstructural evolution of a β-type Ti-40.7Zr–24.8Nb alloy. Bioactive Materials, 2019, 4, 303-311.	15.6	24
92	Corrosion of porous Ti35Zr28Nb in Hanks' solution and 3.5 wt% NaCl. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 529-536.	1.5	6
93	Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioactive Materials, 2019, 4, 56-70.	15.6	348
94	Investigating Mg Biocorrosion In Vitro: Lessons Learned and Recommendations. Jom, 2019, 71, 1406-1413.	1.9	34
95	A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioactive Materials, 2019, 4, 22-36.	15.6	208
96	Bioengineering International joins the Family of Platinum Open Access Journals. Bioengineering International, $2019,1,001$ -001.	0.0	0
97	An investigation of the mechanical and microstructural evolution of a TiNbZr alloy with varied ageing time. Scientific Reports, 2018, 8, 5737.	3.3	32
98	Microstructural evolution and its influence on the mechanical properties of a thermomechanically processed β Ti–32Zr–30Nb alloy. Materials Science & Department of the Structural Materials: Properties, Microstructure and Processing, 2018, 719, 112-123.	5 . 6	21
99	Deformation mechanism and mechanical properties of a thermomechanically processed β Ti–28Nb–35.4Zr alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 224-234.	3.1	75
100	Preface to SPECIAL ISSUE: Advances in Metallic Biomaterials. Science China Materials, 2018, 61, 439-439.	6.3	0
101	Improvement on electrochemical performances of nanoporous titania as anode of lithium-ion batteries through annealing of pure titanium foils. Journal of Energy Chemistry, 2018, 27, 250-263.	12.9	8
102	Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Materials and Design, 2018, 137, 345-354.	7.0	257
103	Calcium Phosphate-Based Composite Coating by Micro-Arc Oxidation (MAO) for Biomedical Application: A Review. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 392-416.	12.3	55
104	Corrosion of Ti35Zr28Nb in Hanks' solution and 3.5 wt% NaCl solution. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 197-206.	1.5	12
105	Strain rate dependence of tensile strength and ductility of nano and ultrafine grained coppers. Materials Science & Dependence and Processing, 2018, 712, 341-349.	5. 6	16
106	Mechanical properties, corrosion, and biocompatibility of Mgâ€Zrâ€Srâ€Dy alloys for biodegradable implant applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2425-2434.	3.4	24
107	Mechanical properties of electrodeposited nanocrystalline and ultrafine-grained Zn-Sn coatings. Surface and Coatings Technology, 2018, 333, 71-80.	4.8	16
108	Investigation and modeling of flank wear process of different PCD tools in cutting titanium alloy Ti6Al4V. International Journal of Advanced Manufacturing Technology, 2018, 95, 719-733.	3.0	26

#	Article	IF	Citations
109	Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn–5Ge alloy for biodegradable implant materials. Acta Biomaterialia, 2018, 82, 197-204.	8.3	134
110	Wear Mechanism and Modeling of Tribological Behavior of Polycrystalline Diamond Tools When Cutting Ti6Al4V. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	2.2	35
111	Investigation on Composition, Mechanical Properties, and Corrosion Resistance of Mg-0.5Ca-X(Sr, Zr,) Tj ETQq1	1 0.78431 1.5	4 ggBT /Ove
112	In Vitro Degradation Behaviors of Manganese-Calcium Phosphate Coatings on an Mg-Ca-Zn Alloy. Scanning, 2018, 2018, 1-9.	1.5	4
113	Microstructures and mechanical properties of in situ TiC–β–Ti–Nb composites with ultrafine grains fabricated by high-pressure sintering. Scientific Reports, 2018, 8, 9496.	3.3	10
114	Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Materialia, 2018, 158, 354-368.	7.9	259
115	The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications. Materials, 2018, 11, 531.	2.9	17
116	Microstructure and mechanical properties of high-pressure-assisted solidification of in situ Al–Mg2Si composites. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 9-15.	5 . 6	28
117	Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites. Materialia, 2018, 3, 122-138.	2.7	41
118	Impact of ruthenium on mechanical properties, biological response and thermal processing of β-type Ti–Nb–Ru alloys. Acta Biomaterialia, 2017, 48, 461-467.	8.3	17
119	Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement. Acta Biomaterialia, 2017, 53, 549-558.	8.3	50
120	Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Materials Science & Dipineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 505-523.	5.6	123
121	Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a β type Ti–Ta–Hf–Zr alloy. RSC Advances, 2017, 7, 12309-12317.	3.6	37
122	Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 10-25.	5.6	87
123	Structural and mechanical properties of magnetron-sputtered Al–Au thin films. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	3
124	Manufacturing of graded titanium scaffolds using a novel space holder technique. Bioactive Materials, 2017, 2, 248-252.	15.6	21
125	New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 119-127.	3.1	67
126	Cellular responses of osteoblastâ€ike cells to 17 elemental metals. Journal of Biomedical Materials Research - Part A, 2017, 105, 148-158.	4.0	59

#	Article	IF	Citations
127	The bioactivity and bone cell attachment of nanotubular layers anodized in aqueous and nonaqueous electrolytes., 2017,, 217-239.		O
128	Metal scaffolds processed by electron beam melting for biomedical applications. , 2017, , 83-110.		11
129	Nanotopography and surface chemistry of TiO2–ZrO2–ZrTiO4 nanotubular surfaces and the influence on their bioactivity and cell responses. , 2017, , 181-202.		1
130	Production methods and characterization of porous Mg and Mg alloys for biomedical applications. , $2017, , 25-82.$		16
131	Metallic scaffolds manufactured by selective laser melting for biomedical applications., 2017,, 1-23.		13
132	Role of Process Control Agent in the Synthesis of Multiâ€Walled Carbon Nanotubes Reinforced Titanium Metal Matrix Powder Mixtures. Advanced Engineering Materials, 2016, 18, 294-303.	3.5	27
133	Novel Ti-Ta-Hf-Zr alloys with promising mechanical properties for prospective stent applications. Scientific Reports, 2016, 6, 37901.	3.3	46
134	Investigations into Ti–(Nb,Ta)–Fe alloys for biomedical applications. Acta Biomaterialia, 2016, 32, 336-347.	8.3	61
135	Deterioration of the Strong sp ² Carbon Network in Carbon Nanotubes during the Mechanical Dispersion Processing—A Review. Critical Reviews in Solid State and Materials Sciences, 2016, 41, 347-366.	12.3	42
136	Effect of ultrasonic stirring on the microstructure and mechanical properties of in situ Mg2Si/Al composite. Materials Chemistry and Physics, 2016, 178, 112-118.	4.0	14
137	Microstructure and superelasticity of a biomedical \hat{l}^2 -type titanium alloy under various processing routes. Applied Materials Today, 2016, 5, 41-51.	4.3	4
138	Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation. Scientific Reports, 2016, 6, 27207.	3.3	84
139	Titanium-niobium pentoxide composites for biomedical applications. Bioactive Materials, 2016, 1, 127-131.	15.6	32
140	Mechanical properties, in vitro corrosion and biocompatibility of newly developed biodegradable Mg-Zr-Sr-Ho alloys for biomedical applications. Scientific Reports, 2016, 6, 31990.	3.3	36
141	Nanostructured Silicon Anodes for Highâ€Performance Lithiumâ€lon Batteries. Advanced Functional Materials, 2016, 26, 647-678.	14.9	261
142	Effects of Mg ₁₇ Sr ₂ Phase on the Bioâ€Corrosion Behavior of Mg–Zr–Sr Alloys. Advanced Engineering Materials, 2016, 18, 259-268.	3.5	23
143	Strontium content and collagenâ€l coating of Magnesiumâ€"Zirconiaâ€"Strontium implants influence osteogenesis and bone resorption. Clinical Oral Implants Research, 2016, 27, e15-24.	4.5	13
144	Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites. Carbon, 2016, 99, 384-397.	10.3	77

#	Article	IF	Citations
145	Effects of the addition of lanthanum and ultrasonic stirring on the microstructure and mechanical properties of the in situ Mg 2 Si/Al composites. Materials and Design, 2016, 90, 424-432.	7.0	37
146	Wear behaviour of DMD-generated high-strength steels using multi-factor experiment design on a pin-on-disc apparatus. International Journal of Advanced Manufacturing Technology, 2016, 87, 461-477.	3.0	8
147	A study of the capacity fade of porous NiO/Ni foam as negative electrode for lithium-ion batteries. lonics, 2016, 22, 173-184.	2.4	16
148	The role of temperature in the strengthening of Cu–Al alloys processed by surface mechanical attrition treatment. Journal of Materials Research, 2015, 30, 1670-1677.	2.6	3
149	Quantitative Analyses of MWCNTâ€Ti Powder Mixtures using Raman Spectroscopy: The Influence of Milling Parameters on Nanostructural Evolution. Advanced Engineering Materials, 2015, 17, 1660-1669.	3.5	78
150	Nanogravel structured NiO/Ni foam as electrode for high-performance lithium-ion batteries. Ionics, 2015, 21, 2709-2723.	2.4	23
151	Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization. Journal of Functional Biomaterials, 2015, 6, 153-170.	4.4	40
152	Ultrahigh Strength Copper Obtained by Surface Mechanical Attrition Treatment at Cryogenic Temperature. Journal of Materials Engineering and Performance, 2015, 24, 5058-5064.	2.5	16
153	The impact of Co/La ratios on microstructure and magnetic properties of the Sr0.75â^'Ca0.25La Fe12â^'Co O19 hexaferrites. Journal of Magnetism and Magnetic Materials, 2015, 384, 64-69.	2.3	19
154	Development of Surface Nano-Crystallization in Alloys by Surface Mechanical Attrition Treatment (SMAT). Critical Reviews in Solid State and Materials Sciences, 2015, 40, 164-181.	12.3	85
155	Processing and Characterization of SrTiO ₃ –TiO ₂ Nanoparticle–Nanotube Heterostructures on Titanium for Biomedical Applications. ACS Applied Materials & Diterfaces, 2015, 7, 16018-16026.	8.0	41
156	A review on porous negative electrodes for high performance lithium-ion batteries. Journal of Porous Materials, 2015, 22, 1313-1343.	2.6	52
157	Enhanced electrochemical performance of Li-ion batteries with nanoporous titania as negative electrodes. Journal of Energy Chemistry, 2015, 24, 157-170.	12.9	14
158	Cell response and bioactivity of titania–zirconia–zirconium titanate nanotubes with different nanoscale topographies fabricated in a non-aqueous electrolyte. Biomaterials Science, 2015, 3, 636-644.	5.4	14
159	Effects of zirconium and strontium on the biocorrosion of Mg–Zr–Sr alloys for biodegradable implant applications. Journal of Materials Chemistry B, 2015, 3, 3714-3729.	5.8	34
160	Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation. Materials & Design, 2015, 74, 138-149.	5.1	55
161	Development of Ti–Nb–Zr alloys with high elastic admissible strain for temporary orthopedic devices. Acta Biomaterialia, 2015, 20, 176-187.	8.3	165
162	Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites. Materials and Design, 2015, 88, 138-148.	7.0	73

#	Article	IF	Citations
163	The influence of titania–zirconia–zirconium titanate nanotube characteristics on osteoblast cell adhesion. Acta Biomaterialia, 2015, 12, 281-289.	8.3	56
164	Carbon Nanotube Reinforced Titanium Metal Matrix Composites Prepared by Powder Metallurgy—A Review. Critical Reviews in Solid State and Materials Sciences, 2015, 40, 38-55.	12.3	137
165	Role of stacking fault energy and strain rate in strengthening of Cu and Cu–Al alloys. Journal of Materials Research, 2014, 29, 1747-1754.	2.6	6
166	Dynamic behaviour of high strength steel parts developed through laser assisted direct metal deposition. Materials & Design, 2014, 64, 650-659.	5.1	24
167	A review of high energy density lithium–air battery technology. Journal of Applied Electrochemistry, 2014, 44, 5-22.	2.9	172
168	Improvement of the biomedical properties of titanium using SMAT and thermal oxidation. Colloids and Surfaces B: Biointerfaces, 2014, 116, 658-665.	5.0	55
169	A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications. Journal of Materials Chemistry A, 2014, 2, 3695-3708.	10.3	96
170	Impact of ruthenium on microstructure and corrosion behavior of β-type Ti–Nb–Ru alloys for biomedical applications. Materials & Design, 2014, 59, 303-309.	5.1	45
171	Biocompatibility of TiO ₂ nanotubes with different topographies. Journal of Biomedical Materials Research - Part A, 2014, 102, 743-751.	4.0	89
172	Surfactants in Mechanical Alloying/Milling: A Catch-22 Situation. Critical Reviews in Solid State and Materials Sciences, 2014, 39, 81-108.	12.3	91
173	Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Journal of Materials Chemistry B, 2014, 2, 1912-1933.	5.8	382
174	Fabrication and characterization of TiO ₄ nanotubes on TiZr alloy manufactured via anodization. Journal of Materials Chemistry B, 2014, 2, 71-83.	5.8	33
175	Collagen type-I leads to in vivo matrix mineralization and secondary stabilization of Mg–Zr–Ca alloy implants. Colloids and Surfaces B: Biointerfaces, 2014, 122, 719-728.	5.0	41
176	Influences of recovery and recrystallization on the superelastic behavior of a \hat{l}^2 titanium alloy made by suction casting. Journal of Materials Chemistry B, 2014, 2, 5972.	5.8	7
177	Ti–SrO metal matrix composites for bone implant materials. Journal of Materials Chemistry B, 2014, 2, 5854-5861.	5.8	5
178	Investigation of bacterial attachment on hydroxyapatite-coated titanium and tantalum. International Journal of Surface Science and Engineering, 2014, 8, 255.	0.4	15
179	Effect of thermomechanical treatment on the superelasticity of Ti–7.5Nb–4Mo–2Sn biomedical alloy. Materials Science and Engineering C, 2014, 44, 76-86.	7.3	14
180	Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	48

#	Article	IF	CITATIONS
181	Corrosion protection of mesoporous bioactive glass coating on biodegradable magnesium. Applied Surface Science, 2014, 303, 196-204.	6.1	30
182	Fabrication of Ti–Nb–Ag alloy via powder metallurgy for biomedical applications. Materials & Design, 2014, 56, 629-634.	5.1	59
183	Cell biological responses of osteoblasts on anodized nanotubular surface of a titaniumâ€zirconium alloy. Journal of Biomedical Materials Research - Part A, 2013, 101, 3416-3430.	4.0	42
184	Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomaterialia, 2013, 9, 5830-5837.	8.3	284
185	A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery. Journal of the Electrochemical Society, 2013, 160, A1256-A1263.	2.9	251
186	Expression of cell adhesion and differentiation related genes in MC3T3 osteoblasts plated on titanium alloys: role of surface properties. Materials Science and Engineering C, 2013, 33, 1573-1582.	7.3	40
187	High Energy Density Metal-Air Batteries: A Review. Journal of the Electrochemical Society, 2013, 160, A1759-A1771.	2.9	569
188	Microstructures, mechanical properties and in vitro corrosion behaviour of biodegradable Mg–Zr–Ca alloys. Journal of Materials Science, 2013, 48, 1632-1639.	3.7	24
189	The defect structures and mechanical properties of Cu and Cu–Al alloys processed by split Hopkinson pressure bar. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 406-409.	5.6	10
190	Influence of stacking fault energy and strain rate on the mechanical properties in Cu and Cu–Al–Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 174-177.	5.6	11
191	The influence of strain rate, deformation temperature and stacking fault energy on the mechanical properties of Cu alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 583, 199-204.	5.6	40
192	Simultaneously enhanced strength and ductility of Cu–xGe alloys through manipulating the stacking fault energy (SFE). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 569, 144-149.	5.6	33
193	Cell response of anodized nanotubes on titanium and titanium alloys. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2726-2739.	4.0	159
194	Effect of stacking fault energy and strain rate on the mechanical properties of Cu and Cu alloys. Journal of Alloys and Compounds, 2013, 573, 1-5.	5.5	11
195	Microstructural characteristics of a nanoeutectic Ag–Cu alloy processed by surface mechanical attrition treatment. Scripta Materialia, 2013, 68, 499-502.	5.2	14
196	Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration. International Journal of Nanomedicine, 2013, 8, 2887.	6.7	21
197	Impact Response and Energy Absorption of Aluminium Foam-Filled Tubes. Applied Mechanics and Materials, 2012, 152-154, 436-439.	0.2	4
198	Nanoscale SiO ₂ /ZrO ₂ Particulate-Reinforced Titanium Composites for Bone Implant Materials. Key Engineering Materials, 2012, 520, 242-247.	0.4	0

#	Article	IF	Citations
199	Biological Performances of Titanium Scaffolds: A Review. Advanced Materials Research, 2012, 535-537, 1634-1637.	0.3	O
200	Microstructures and Various Properties of Hot-Extruded Mg-Zr-Ca Alloys for Biomedical Applications. Applied Mechanics and Materials, 2012, 232, 162-166.	0.2	1
201	Microstructures and mechanical properties of as cast Mg–Zr–Ca alloys for biomedical applications. Materials Technology, 2012, 27, 52-54.	3.0	18
202	Biodegradable Mgâ€"Zrâ€"Ca alloys for bone implant materials. Materials Technology, 2012, 27, 49-51.	3.0	19
203	Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomaterialia, 2012, 8, 3177-3188.	8.3	251
204	Thermal oxidation behaviour of bulk titanium with nanocrystalline surface layer. Corrosion Science, 2012, 59, 352-359.	6.6	58
205	Investigation of cell shape effect on the mechanical behaviour of open-cell metal foams. Computational Materials Science, 2012, 55, 1-9.	3.0	34
206	Influence of Titanium Alloying Element Substrata on Bacterial Adhesion. Advanced Materials Research, 2012, 535-537, 992-995.	0.3	1
207	A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia, 2012, 8, 2875-2888.	8.3	359
208	A new look at biomedical Ti-based shape memory alloys. Acta Biomaterialia, 2012, 8, 1661-1669.	8.3	519
209	Tribological Behaviour of Pure Ti with a Nanocrystalline Surface Layer Under Different Loads. Tribology Letters, 2012, 45, 59-66.	2.6	31
210	Osteoblast cell response to nanoscale SiO2/ZrO2 particulate-reinforced titanium composites and scaffolds by powder metallurgy. Journal of Materials Science, 2012, 47, 4410-4414.	3.7	10
211	Microstructures and Mechanical Properties of Hot-Rolled Mg–Zr–Ca Alloys for Biomedical Applications. Advanced Science Letters, 2012, 5, 898-900.	0.2	1
212	Phase transformation in oil-quenched Ni–21.2Al–20Fe alloy. Journal of Alloys and Compounds, 2011, 509, 1644-1647.	5.5	3
213	Fabrication and characterisation of microporous titanium. Powder Metallurgy, 2011, 54, 56-58.	1.7	3
214	In vitro behavior of human osteoblast-like cells (SaOS2) cultured on surface modified titanium and titanium–zirconium alloy. Materials Science and Engineering C, 2011, 31, 1545-1552.	7.3	12
215	The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys. Journal of Materials Science, 2011, 46, 365-371.	3.7	70
216	The influence of surface energy of titaniumâ€zirconium alloy on osteoblast cell functions <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2011, 97A, 27-36.	4.0	107

#	Article	IF	CITATIONS
217	Effect of ball-milling time on the structural characteristics of biomedical porous Ti–Sn–Nb alloy. Materials Science and Engineering C, 2011, 31, 921-928.	7.3	67
218	Synthesis and characterization of nanostructured Ag on porous titania. Applied Surface Science, 2011, 257, 4836-4843.	6.1	9
219	Numerical investigation of the effect of porous titanium femoral prosthesis on bone remodeling. Materials & Design, 2011, 32, 1776-1782.	5.1	41
220	Sound absorption characteristics of aluminum foam with spherical cells. Journal of Applied Physics, 2011, 110, .	2.5	35
221	BIODEGRADABLE Mg-Zr-Ca ALLOYS FOR BONE IMPLANT MATERIALS. , 2011, , .		1
222	Microstructural Characterization and Mechanical Properties of Mg-Zr-Ca Alloys Prepared by Hot-Extrusion for Biomedical Applications. Advanced Science Letters, 2011, 4, 2860-2863.	0.2	7
223	SHEAR BAND EVOLUTION AND NANOSTRUCTURE FORMATION IN TITANIUM BY COLD ROLLING. , 2011, , .		0
224	Effects of Deformation-Induced Heating on Bond Strength of Rolled Metal Multilayer. Materials Science Forum, 2010, 654-656, 2579-2582.	0.3	0
225	Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium. Acta Materialia, 2010, 58, 4536-4548.	7.9	96
226	Nanohydroxyapatite coating on a titanium–niobium alloy by a hydrothermal process. Acta Biomaterialia, 2010, 6, 1584-1590.	8.3	43
227	Study on the Role of Stearic Acid and Ethylene-bis-stearamide on the Mechanical Alloying of a Biomedical Titanium Based Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1409-1420.	2.2	28
228	Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scripta Materialia, 2010, 62, 321-324.	5.2	138
229	Simultaneously enhanced strength and ductility of titanium via multimodal grain structure. Scripta Materialia, 2010, 63, 941-944.	5.2	99
230	<i>In vitro</i> osteoblastâ€like cell proliferation on nanoâ€hydroxyapatite coatings with different morphologies on a titaniumâ€niobium shape memory alloy. Journal of Biomedical Materials Research - Part A, 2010, 95A, 766-773.	4.0	28
231	Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomaterialia, 2010, 6, 1630-1639.	8.3	103
232	Low frequency damping capacity in a strained Fe–Mn–Si alloy. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 338-343.	1.8	1
233	Bone Formation Following Implantation of Titanium Sponge Rods into Humeral Osteotomies in Dogs: A Histological and Histometrical Study. Clinical Implant Dentistry and Related Research, 2010, 12, 72-79.	3.7	26
234	Design of a New Biocompatible Ti-Based Shape Memory Alloy and Its Superelastic Deformation Behaviour. Materials Science Forum, 2010, 654-656, 2087-2090.	0.3	4

#	Article	IF	Citations
235	Effect of Pore Size on Mechanical Properties of Titanium Foams. Materials Science Forum, 2010, 654-656, 827-830.	0.3	5
236	Compressive deformation and damage of Mg-based metallic glass interpenetrating phase composite containing 30–70 vol% titanium. Journal of Materials Research, 2010, 25, 2192-2196.	2.6	8
237	Biomimetic Modification of Porous TiNbZr Alloy Scaffold for Bone Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 309-316.	3.1	58
238	Cytotoxicity of Titanium and Titanium Alloying Elements. Journal of Dental Research, 2010, 89, 493-497.	5.2	222
239	Theoretical study on behaviour of superplastic forming/diffusion bonding of bulk metallic glasses. Materials Science and Technology, 2010, 26, 361-366.	1.6	10
240	Effects of structural property and surface modification of Ti6Ta4Sn scaffolds on the response of SaOS2 cells for bone tissue engineering. Journal of Alloys and Compounds, 2010, 494, 323-329.	5.5	32
241	Thermal stability of the Al70Ni10Ti10Zr5Ta5 amorphous alloy powder fabricated by mechanical alloying. Journal of Alloys and Compounds, 2010, 496, 313-316.	5 . 5	15
242	Fabrication of Al-based bulk metallic glass by mechanical alloying and vacuum hot consolidation. Journal of Alloys and Compounds, 2010, 501, 164-167.	5.5	34
243	Porous shape memory alloy scaffolds for biomedical applications: a review. Physica Scripta, 2010, T139, 014070.	2.5	32
244	Mg-based metallic glass/titanium interpenetrating phase composite with high mechanical performance. Applied Physics Letters, 2009, 95, .	3.3	28
245	Preparation of Bioactive Porous Titanium-Molybdenum Alloy through Powder Metallurgy. Materials Science Forum, 2009, 620-622, 745-748.	0.3	0
246	Ti6Ta4Sn Alloy and Subsequent Scaffolding for Bone Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 3151-3159.	3.1	58
247	Biomimetic Coating on Pure Titanium Submitted to Different Surface Treatments. Materials Science Forum, 2009, 618-619, 311-314.	0.3	1
248	Extrusion properties of a Zr-based bulk metallic glass. Materials Letters, 2009, 63, 1317-1319.	2.6	5
249	Influence of deformation-induced heating on the bond strength of rolled metal multilayers. Materials Letters, 2009, 63, 2300-2302.	2.6	17
250	Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomaterialia, 2009, 5, 1808-1820.	8.3	90
251	Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Materials Science and Engineering C, 2009, 29, 165-171.	7.3	59
252	The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomaterialia, 2009, 5, 2290-2302.	8.3	61

#	Article	IF	Citations
253	Porous TiNbZr alloy scaffolds for biomedical applications. Acta Biomaterialia, 2009, 5, 3616-3624.	8.3	157
254	The kinetics of two-stage formation of TiAl3 in multilayered Ti/Al foils prepared by accumulative roll bonding. Intermetallics, 2009, 17, 727-732.	3.9	60
255	Plastic deformation in the annealed Zr41Ti14Cu12.5Ni10Be22.5 bulk metal glass under indenter. Journal of Alloys and Compounds, 2009, 475, 501-505.	5.5	10
256	Degradation of the strength of porous titanium after alkali and heat treatment. Journal of Alloys and Compounds, 2009, 485, 316-319.	5.5	24
257	Plastic deformation in a partially crystallized Zr-based BMG under Vickers indenter. Journal of Alloys and Compounds, 2009, 484, 886-890.	5.5	5
258	Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti–18Nb–4Sn alloy for biomedical applications. Acta Biomaterialia, 2008, 4, 1963-1968.	8.3	95
259	Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid. Biotechnology and Bioengineering, 2008, 101, 378-387.	3.3	109
260	Synthesis of Ti–Sn–Nb alloy by powder metallurgy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 562-570.	5.6	52
261	Titanium–nickel shape memory alloy foams for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 269-273.	3.1	89
262	In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies. Acta Biomaterialia, 2008, 4, 1530-1535.	8.3	82
263	Effect of heat-treatment atmosphere on the bond strength of apatite layer on Ti substrate. Dental Materials, 2008, 24, 1549-1555.	3.5	32
264	Plastic deformation in Zr41Ti14Cu12.5Ni10Be22.5 bulk metal glass under Vickers indenter. Journal of Alloys and Compounds, 2008, 461, 173-177.	5.5	8
265	INFLUENCE OF POROSITY ON SHAPE MEMORY BEHAVIOR OF POROUS TINI SHAPE MEMORY ALLOY. Functional Materials Letters, 2008, 01, 215-219.	1.2	5
266	Apatite-inducing ability of titanium oxide layer on titanium surface: The effect of surface energy. Journal of Materials Research, 2008, 23, 1682-1688.	2.6	48
267	Damping properties of open cell microcellular pure Al foams. Materials Science and Technology, 2007, 23, 1336-1340.	1.6	1
268	Crushing Simulation of Foam-Filled Aluminium Tubes. Materials Transactions, 2007, 48, 1901-1906.	1.2	22
269	Composition dependency of the glass forming ability (GFA) in Mg–Ni–Si system by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 35-39.	5.6	7
270	Effect of relaxation on pressure sensitivity index in a Zr-based metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 58-62.	5.6	28

#	Article	IF	CITATIONS
271	Hydroxyapatite/titania sol–gel coatings on titanium–zirconium alloy for biomedical applicationsâ~†. Acta Biomaterialia, 2007, 3, 403-410.	8.3	145
272	Sol-gel derived HA/TiO2 double coatings on Ti scaffolds for orthopaedic applications. Transactions of Nonferrous Metals Society of China, 2006, 16, s209-s216.	4.2	27
273	Elastic modulus and hardness of cortical and trabecular bovine bone measured by nanoindentation. Transactions of Nonferrous Metals Society of China, 2006, 16, s744-s748.	4.2	45
274	Phase formation and physical properties of mechanically alloyed amorphous 55Mg35Ni10Si. Journal of Non-Crystalline Solids, 2006, 352, 3244-3248.	3.1	5
275	Fabrication of novel TiZr alloy foams for biomedical applications. Materials Science and Engineering C, 2006, 26, 1439-1444.	7.3	90
276	Sol–gel derived hydroxyapatite/titania biocoatings on titanium substrate. Materials Letters, 2006, 60, 1575-1578.	2.6	64
277	Preparation of Mg 55 Ni 35 Si 10 Amorphous Powders by Mechanical Alloying and Consolidation by Vacuum Hot Pressing. Chinese Physics Letters, 2006, 23, 2161-2164.	3.3	2
278	Energy Absorption and Crushing Behaviour of Foam-Filled Aluminium Tubes. Materials Transactions, 2005, 46, 2633-2636.	1.2	24
279	Compressibility of porous magnesium foam: dependency on porosity and pore size. Materials Letters, 2004, 58, 357-360.	2.6	245
280	Effects of the Density on Compressive Properties in Cellular Aluminum Produced by the Sintering Method. Materials Transactions, 2004, 45, 327-329.	1.2	6
281	Processing of fine-grained aluminum foam by spark plasma sintering. Journal of Materials Science Letters, 2003, 22, 1407-1409.	0.5	55
282	Fabrication of nanoscale Ti honeycombs by focused ion beam. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 344, 365-367.	5.6	21
283	Corrosion and Mechanical Properties of Recycled 5083 Aluminum Alloy by Solid State Recycling. Materials Transactions, 2003, 44, 1284-1289.	1.2	23
284	Mechanical Properties and Blow Forming of Rolled AZ31 Mg Alloy Sheet. Materials Transactions, 2003, 44, 484-489.	1.2	16
285	Fabrication of Porous TiAl Intermetallic Compound by Self-propagating High Temperature Synthesis. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2003, 50, 848-850.	0.2	1
286	Compressive Deformation Characteristics of Open-Cell Mg Alloys with Controlled Cell Structure. Materials Transactions, 2002, 43, 1298-1305.	1.2	35
287	Superplasticity and Cavitation of Recycled AZ31 Magnesium Alloy Fabricated by Solid Recycling Process. Materials Transactions, 2002, 43, 2437-2442.	1.2	54
288	Mechanical Properties and Press Formability at Room Temperature of AZ31 Mg Alloy Processed by Single Roller Drive Rolling. Materials Transactions, 2002, 43, 2554-2560.	1.2	110

#	Article	IF	Citations
289	Solid-state recycling from machined scraps to a cellular solid. Journal of Materials Research, 2002, 17, 2783-2786.	2.6	2
290	Novel titanium foam for bone tissue engineering. Journal of Materials Research, 2002, 17, 2633-2639.	2.6	182
291	Processing and mechanical properties of autogenous titanium implant materials. Journal of Materials Science: Materials in Medicine, 2002, 13, 397-401.	3.6	225
292	Focused ion beam fabrication of amorphous and polycrystalline Fe78B13Si9 alloys. Journal of Materials Science Letters, 2002, 21, 837-839.	0.5	5
293	Title is missing!. Journal of Materials Science Letters, 2002, 21, 1695-1697.	0.5	6
294	Microstructure and Mechanical Properties of AZ31 and ZK60 Magnesium Alloys Processed by Open Die Forging Zairyo/Journal of the Society of Materials Science, Japan, 2001, 50, 1228-1232.	0.2	2
295	Corrosion and Mechanical Properties of AZ91D Magnesium Alloy Fabricated by Solid Recycling Process. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2001, 65, 621-626.	0.4	23
296	Forging Characteristics of AZ31 Mg Alloy. Materials Transactions, 2001, 42, 414-417.	1.2	34
297	Fabrication of TiAl by blended elemental powder semisolid forming. Journal of Materials Science, 2001, 36, 1741-1745.	3.7	28
298	Processing of biocompatible porous Ti and Mg. Scripta Materialia, 2001, 45, 1147-1153.	5.2	600
299	Effects of Cell Geometry on the Compressive Properties of Nickel Foams. Materials Transactions, JIM, 2000, 41, 1136-1138.	0.9	15
300	Effects of Heat Treatment on the Compressive Properties of AZ91 Mg Foam. Materials Transactions, JIM, 2000, 41, 1192-1195.	0.9	16
301	Title is missing!. Journal of Materials Science, 2000, 35, 2099-2105.	3.7	20
302	Elemental blended powders semisolid forming of Ti-Al based alloys. Journal of Materials Science, 2000, 35, 5927-5932.	3.7	10
303	The effect of lamellar spacing on the creep behavior of a fully lamellar TiAl alloy. Intermetallics, 2000, 8, 525-529.	3.9	53
304	XAFS and XRD studies on local and long-range structures of mechanically alloyed AlxTi1â^'xsolid solutions. Journal of Synchrotron Radiation, 1999, 6, 725-727.	2.4	2
305	Diffusion ledge mechanism of massive \hat{I}^3 transformation in quenched TiAl alloys. Journal of Materials Science Letters, 1999, 18, 927-929.	0.5	5
306	Metastable structures of immiscible system induced by mechanical alloying. Journal of Physics Condensed Matter, 1997, 9, 11077-11083.	1.8	12

#	Article	IF	CITATIONS
307	Consolidation of Titanium Tri-aluminide using by Spark Plasma Sintering Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44, 554-559.	0.2	1
308	New microstructure-property approach: Quenching/tempering treatment in gamma TiAl alloy. Scripta Metallurgica Et Materialia, 1995, 33, 1283-1288.	1.0	10
309	<i>In Vitro</i> Cytotoxicity of Binary Ti Alloys for Bone Implants. Materials Science Forum, 0, 618-619, 295-298.	0.3	3
310	Nucleation and Growth during Reactions in Accumulative Roll Bonding of Ti/Al Multilayers. Materials Science Forum, 0, 618-619, 429-432.	0.3	0
311	Bioactive Hydroxyapatite Coating on Titanium-Niobium Alloy through a Sol-Gel Process. Materials Science Forum, 0, 618-619, 325-328.	0.3	6
312	Apatite Formation on Nano-Structured Titanium and Niobium Surface. Materials Science Forum, 0, 614, 85-92.	0.3	6
313	Effect of Structure Relaxation on the Plastic Deformation Behaviour in a Zr-Based BMG under Indenter. Materials Science Forum, 0, 618-619, 437-441.	0.3	O
314	Bioactivating the Surfaces of Titanium by Sol-Gel Process. Materials Science Forum, 0, 614, 67-71.	0.3	8
315	Biodegradable Mg-Ca and Mg-Ca-Y Alloys for Regenerative Medicine. Materials Science Forum, 0, 654-656, 2192-2195.	0.3	36
316	Wear Behaviour of Pure Ti with a Nanocrystalline Surface Layer. Applied Mechanics and Materials, 0, 66-68, 1500-1504.	0.2	5
317	Mechanical Property and Microstructure of Ti-Ta-Ag Alloy for Biomedical Applications. Key Engineering Materials, 0, 520, 254-259.	0.4	2
318	A Brief Review of Biomedical Shape Memory Alloys by Powder Metallurgy. Key Engineering Materials, 0, 520, 195-200.	0.4	4
319	Fabrication of Ti14Nb4Sn Alloys for Bone Tissue Engineering Applications. Key Engineering Materials, 0, 520, 214-219.	0.4	1
320	Development of Bio-Compatible Metallic Structures Using Direct Metal Deposition Process. Advanced Materials Research, 0, 576, 141-145.	0.3	0
321	A Newly Developed Biocompatible Titanium Alloy and its Scaffolding by Powder Metallurgy. Key Engineering Materials, 0, 520, 201-207.	0.4	2
322	Preparation of Titanium/Strontia Composite by Powder Metallurgy for Biomedical Application. Key Engineering Materials, 0, 520, 248-253.	0.4	0
323	Biomimetic Creation of Surfaces on Porous Titanium for Biomedical Applications. Advanced Materials Research, 0, 896, 259-262.	0.3	2
324	Compressive Properties of Solid and Porous Parts Made from High Strength Steel Alloys by Direct Metal Deposition. Advanced Materials Research, 0, 974, 141-146.	0.3	0