Cuie Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1441064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Processing of biocompatible porous Ti and Mg. Scripta Materialia, 2001, 45, 1147-1153.	2.6	600
2	High Energy Density Metal-Air Batteries: A Review. Journal of the Electrochemical Society, 2013, 160, A1759-A1771.	1.3	569
3	A new look at biomedical Ti-based shape memory alloys. Acta Biomaterialia, 2012, 8, 1661-1669.	4.1	519
4	Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Journal of Materials Chemistry B, 2014, 2, 1912-1933.	2.9	382
5	A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia, 2012, 8, 2875-2888.	4.1	359
6	Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioactive Materials, 2019, 4, 56-70.	8.6	348
7	Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomaterialia, 2013, 9, 5830-5837.	4.1	284
8	Nanostructured Silicon Anodes for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 647-678.	7.8	261
9	Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Materialia, 2018, 158, 354-368.	3.8	259
10	Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Materials and Design, 2018, 137, 345-354.	3.3	257
11	Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomaterialia, 2012, 8, 3177-3188.	4.1	251
12	A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery. Journal of the Electrochemical Society, 2013, 160, A1256-A1263.	1.3	251
13	Compressibility of porous magnesium foam: dependency on porosity and pore size. Materials Letters, 2004, 58, 357-360.	1.3	245
14	Processing and mechanical properties of autogenous titanium implant materials. Journal of Materials Science: Materials in Medicine, 2002, 13, 397-401.	1.7	225
15	Cytotoxicity of Titanium and Titanium Alloying Elements. Journal of Dental Research, 2010, 89, 493-497.	2.5	222
16	A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioactive Materials, 2019, 4, 22-36.	8.6	208
17	Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioactive Materials, 2021, 6, 836-879.	8.6	192
18	Novel titanium foam for bone tissue engineering. Journal of Materials Research, 2002, 17, 2633-2639.	1.2	182

#	Article	IF	CITATIONS
19	A review of high energy density lithium–air battery technology. Journal of Applied Electrochemistry, 2014, 44, 5-22.	1.5	172
20	Development of Ti–Nb–Zr alloys with high elastic admissible strain for temporary orthopedic devices. Acta Biomaterialia, 2015, 20, 176-187.	4.1	165
21	Cell response of anodized nanotubes on titanium and titanium alloys. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2726-2739.	2.1	159
22	Porous TiNbZr alloy scaffolds for biomedical applications. Acta Biomaterialia, 2009, 5, 3616-3624.	4.1	157
23	Hydroxyapatite/titania sol–gel coatings on titanium–zirconium alloy for biomedical applicationsâ~†. Acta Biomaterialia, 2007, 3, 403-410.	4.1	145
24	Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scripta Materialia, 2010, 62, 321-324.	2.6	138
25	Carbon Nanotube Reinforced Titanium Metal Matrix Composites Prepared by Powder Metallurgy—A Review. Critical Reviews in Solid State and Materials Sciences, 2015, 40, 38-55.	6.8	137
26	Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn–5Ge alloy for biodegradable implant materials. Acta Biomaterialia, 2018, 82, 197-204.	4.1	134
27	Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 505-523.	2.6	123
28	Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review. Acta Biomaterialia, 2019, 89, 14-32.	4.1	118
29	A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications. Acta Biomaterialia, 2020, 106, 410-427.	4.1	117
30	Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Acta Biomaterialia, 2019, 96, 1-19.	4.1	113
31	Mechanical Properties and Press Formability at Room Temperature of AZ31 Mg Alloy Processed by Single Roller Drive Rolling. Materials Transactions, 2002, 43, 2554-2560.	0.4	110
32	Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid. Biotechnology and Bioengineering, 2008, 101, 378-387.	1.7	109
33	The influence of surface energy of titaniumâ€zirconium alloy on osteoblast cell functions <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2011, 97A, 27-36.	2.1	107
34	HA coating on Mg alloys for biomedical applications: A review. Journal of Magnesium and Alloys, 2020, 8, 929-943.	5.5	104
35	Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomaterialia, 2010, 6, 1630-1639.	4.1	103
36	Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants. Acta Biomaterialia, 2020, 102, 481-492.	4.1	102

#	Article	IF	CITATIONS
37	Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review. Journal of Materials Science and Technology, 2021, 94, 196-215.	5.6	101
38	Simultaneously enhanced strength and ductility of titanium via multimodal grain structure. Scripta Materialia, 2010, 63, 941-944.	2.6	99
39	High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries. Journal of Energy Storage, 2020, 27, 101036.	3.9	98
40	Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium. Acta Materialia, 2010, 58, 4536-4548.	3.8	96
41	A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications. Journal of Materials Chemistry A, 2014, 2, 3695-3708.	5.2	96
42	Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti–18Nb–4Sn alloy for biomedical applications. Acta Biomaterialia, 2008, 4, 1963-1968.	4.1	95
43	Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—A review. Acta Biomaterialia, 2020, 103, 1-23.	4.1	95
44	Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Acta Biomaterialia, 2020, 102, 493-507.	4.1	93
45	Surfactants in Mechanical Alloying/Milling: A Catch-22 Situation. Critical Reviews in Solid State and Materials Sciences, 2014, 39, 81-108.	6.8	91
46	Fabrication of novel TiZr alloy foams for biomedical applications. Materials Science and Engineering C, 2006, 26, 1439-1444.	3.8	90
47	Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomaterialia, 2009, 5, 1808-1820.	4.1	90
48	Titanium–nickel shape memory alloy foams for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 269-273.	1.5	89
49	Biocompatibility of TiO ₂ nanotubes with different topographies. Journal of Biomedical Materials Research - Part A, 2014, 102, 743-751.	2.1	89
50	Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 10-25.	2.6	87
51	Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications. Journal of Magnesium and Alloys, 2020, 8, 269-290.	5.5	87
52	Development of Surface Nano-Crystallization in Alloys by Surface Mechanical Attrition Treatment (SMAT). Critical Reviews in Solid State and Materials Sciences, 2015, 40, 164-181.	6.8	85
53	Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Acta Biomaterialia, 2019, 87, 273-284.	4.1	85
54	Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation. Scientific Reports, 2016, 6, 27207.	1.6	84

#	Article	IF	CITATIONS
55	In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies. Acta Biomaterialia, 2008, 4, 1530-1535.	4.1	82
56	Quantitative Analyses of MWCNTâ€ī Powder Mixtures using Raman Spectroscopy: The Influence of Milling Parameters on Nanostructural Evolution. Advanced Engineering Materials, 2015, 17, 1660-1669.	1.6	78
57	Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites. Carbon, 2016, 99, 384-397.	5.4	77
58	Deformation mechanism and mechanical properties of a thermomechanically processed β Ti–28Nb–35.4Zr alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 224-234.	1.5	75
59	Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites. Materials and Design, 2015, 88, 138-148.	3.3	73
60	High strength porous PLA gyroid scaffolds manufactured via fused deposition modeling for tissue-engineering applications. Smart Materials in Medicine, 2021, 2, 15-25.	3.7	72
61	A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroid scaffolds. Acta Biomaterialia, 2019, 97, 587-596.	4.1	71
62	The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys. Journal of Materials Science, 2011, 46, 365-371.	1.7	70
63	Effect of ball-milling time on the structural characteristics of biomedical porous Ti–Sn–Nb alloy. Materials Science and Engineering C, 2011, 31, 921-928.	3.8	67
64	New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 119-127.	1.5	67
65	Carbon Nanotubes and Graphene as Nanoreinforcements in Metallic Biomaterials: a Review. Advanced Biology, 2019, 3, e1800212.	3.0	66
66	A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Acta Biomaterialia, 2021, 130, 80-97.	4.1	65
67	Sol–gel derived hydroxyapatite/titania biocoatings on titanium substrate. Materials Letters, 2006, 60, 1575-1578.	1.3	64
68	Exploring the Role of Manganese on the Microstructure, Mechanical Properties, Biodegradability, and Biocompatibility of Porous Iron-Based Scaffolds. ACS Biomaterials Science and Engineering, 2019, 5, 1686-1702.	2.6	62
69	The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomaterialia, 2009, 5, 2290-2302.	4.1	61
70	Investigations into Ti–(Nb,Ta)–Fe alloys for biomedical applications. Acta Biomaterialia, 2016, 32, 336-347.	4.1	61
71	The kinetics of two-stage formation of TiAl3 in multilayered Ti/Al foils prepared by accumulative roll bonding. Intermetallics, 2009, 17, 727-732.	1.8	60
72	Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Materials Science and Engineering C, 2009, 29, 165-171.	3.8	59

#	Article	IF	CITATIONS
73	Fabrication of Ti–Nb–Ag alloy via powder metallurgy for biomedical applications. Materials & Design, 2014, 56, 629-634.	5.1	59
74	Cellular responses of osteoblastâ€like cells to 17 elemental metals. Journal of Biomedical Materials Research - Part A, 2017, 105, 148-158.	2.1	59
75	Ti6Ta4Sn Alloy and Subsequent Scaffolding for Bone Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 3151-3159.	1.6	58
76	Biomimetic Modification of Porous TiNbZr Alloy Scaffold for Bone Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 309-316.	1.6	58
77	Thermal oxidation behaviour of bulk titanium with nanocrystalline surface layer. Corrosion Science, 2012, 59, 352-359.	3.0	58
78	Quantitative analysis of cooling and lubricating effects of graphene oxide nanofluids in machining titanium alloy Ti6Al4V. Journal of Materials Processing Technology, 2019, 271, 584-598.	3.1	58
79	Development of biodegradable Zn–1Mg–0.1RE (REÂ=ÂEr, Dy, and Ho) alloys for biomedical applications. Acta Biomaterialia, 2020, 117, 384-399.	4.1	57
80	The influence of titania–zirconia–zirconium titanate nanotube characteristics on osteoblast cell adhesion. Acta Biomaterialia, 2015, 12, 281-289.	4.1	56
81	The manufacturing and the application of polycrystalline diamond tools – A comprehensive review. Journal of Manufacturing Processes, 2020, 56, 400-416.	2.8	56
82	Processing of fine-grained aluminum foam by spark plasma sintering. Journal of Materials Science Letters, 2003, 22, 1407-1409.	0.5	55
83	Improvement of the biomedical properties of titanium using SMAT and thermal oxidation. Colloids and Surfaces B: Biointerfaces, 2014, 116, 658-665.	2.5	55
84	Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation. Materials & Design, 2015, 74, 138-149.	5.1	55
85	Calcium Phosphate-Based Composite Coating by Micro-Arc Oxidation (MAO) for Biomedical Application: A Review. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 392-416.	6.8	55
86	Superplasticity and Cavitation of Recycled AZ31 Magnesium Alloy Fabricated by Solid Recycling Process. Materials Transactions, 2002, 43, 2437-2442.	0.4	54
87	Improvement of corrosion resistance of H59 brass through fabricating superhydrophobic surface using laser ablation and heating treatment. Corrosion Science, 2021, 180, 109186.	3.0	54
88	The effect of lamellar spacing on the creep behavior of a fully lamellar TiAl alloy. Intermetallics, 2000, 8, 525-529.	1.8	53
89	Synthesis of Ti–Sn–Nb alloy by powder metallurgy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 562-570.	2.6	52
90	A review on porous negative electrodes for high performance lithium-ion batteries. Journal of Porous Materials, 2015, 22, 1313-1343.	1.3	52

#	Article	IF	CITATIONS
91	Reversible wettability transition between superhydrophilicity and superhydrophobicity through alternate heating-reheating cycle on laser-ablated brass surface. Applied Surface Science, 2019, 492, 349-361.	3.1	52
92	Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. Journal of Alloys and Compounds, 2020, 828, 154461.	2.8	52
93	Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications. Journal of Materials Science and Technology, 2020, 41, 191-198.	5.6	51
94	Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement. Acta Biomaterialia, 2017, 53, 549-558.	4.1	50
95	Apatite-inducing ability of titanium oxide layer on titanium surface: The effect of surface energy. Journal of Materials Research, 2008, 23, 1682-1688.	1.2	48
96	Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	48
97	A review of high-strength nanolaminates and evaluation of their properties. Journal of Materials Science and Technology, 2020, 50, 215-244.	5.6	47
98	In vitro and in vivo assessment of the effect of biodegradable magnesium alloys on osteogenesis. Acta Biomaterialia, 2022, 141, 454-465.	4.1	47
99	Novel Ti-Ta-Hf-Zr alloys with promising mechanical properties for prospective stent applications. Scientific Reports, 2016, 6, 37901.	1.6	46
100	Effects of selected metallic and interstitial elements on the microstructure and mechanical properties of beta titanium alloys for orthopedic applications. Materialia, 2019, 6, 100323.	1.3	46
101	Binary Zn–Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity. Journal of Materials Science and Technology, 2021, 74, 216-229.	5.6	46
102	Elastic modulus and hardness of cortical and trabecular bovine bone measured by nanoindentation. Transactions of Nonferrous Metals Society of China, 2006, 16, s744-s748.	1.7	45
103	Impact of ruthenium on microstructure and corrosion behavior of β-type Ti–Nb–Ru alloys for biomedical applications. Materials & Design, 2014, 59, 303-309.	5.1	45
104	Novel porous Ti35Zr28Nb scaffolds fabricated by powder metallurgy with excellent osteointegration ability for bone-tissue engineering applications. Materials Science and Engineering C, 2019, 105, 110015.	3.8	44
105	Nanohydroxyapatite coating on a titanium–niobium alloy by a hydrothermal process. Acta Biomaterialia, 2010, 6, 1584-1590.	4.1	43
106	Cell biological responses of osteoblasts on anodized nanotubular surface of a titaniumâ€≢irconium alloy. Journal of Biomedical Materials Research - Part A, 2013, 101, 3416-3430.	2.1	42
107	Deterioration of the Strong sp ² Carbon Network in Carbon Nanotubes during the Mechanical Dispersion Processing—A Review. Critical Reviews in Solid State and Materials Sciences, 2016, 41, 347-366.	6.8	42
108	Biodegradable ternary Zn–3Ge–0.5X (X=Cu, Mg, and Fe) alloys for orthopedic applications. Acta Biomaterialia, 2020, 115, 432-446.	4.1	42

#	Article	IF	CITATIONS
109	The influence of Ca and Cu additions on the microstructure, mechanical and degradation properties of Zn–Ca–Cu alloys for absorbable wound closure device applications. Bioactive Materials, 2021, 6, 1436-1451.	8.6	42
110	Numerical investigation of the effect of porous titanium femoral prosthesis on bone remodeling. Materials & Design, 2011, 32, 1776-1782.	5.1	41
111	Collagen type-I leads to in vivo matrix mineralization and secondary stabilization of Mg–Zr–Ca alloy implants. Colloids and Surfaces B: Biointerfaces, 2014, 122, 719-728.	2.5	41
112	Processing and Characterization of SrTiO ₃ –TiO ₂ Nanoparticle–Nanotube Heterostructures on Titanium for Biomedical Applications. ACS Applied Materials & Interfaces, 2015, 7, 16018-16026.	4.0	41
113	Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites. Materialia, 2018, 3, 122-138.	1.3	41
114	Expression of cell adhesion and differentiation related genes in MC3T3 osteoblasts plated on titanium alloys: role of surface properties. Materials Science and Engineering C, 2013, 33, 1573-1582.	3.8	40
115	The influence of strain rate, deformation temperature and stacking fault energy on the mechanical properties of Cu alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 583, 199-204.	2.6	40
116	Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization. Journal of Functional Biomaterials, 2015, 6, 153-170.	1.8	40
117	Biodegradable Zn–3Cu and Zn–3Cu–0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications. Journal of Materials Science and Technology, 2021, 68, 76-90.	5.6	38
118	Effects of the addition of lanthanum and ultrasonic stirring on the microstructure and mechanical properties of the in situ Mg 2 Si/Al composites. Materials and Design, 2016, 90, 424-432.	3.3	37
119	Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a β type Ti–Ta–Hf–Zr alloy. RSC Advances, 2017, 7, 12309-12317.	1.7	37
120	Porous Ti-10Mo alloy fabricated by powder metallurgy for promoting bone regeneration. Science China Materials, 2019, 62, 1053-1064.	3.5	37
121	Biodegradable Mg-Ca and Mg-Ca-Y Alloys for Regenerative Medicine. Materials Science Forum, 0, 654-656, 2192-2195.	0.3	36
122	Mechanical properties, in vitro corrosion and biocompatibility of newly developed biodegradable Mg-Zr-Sr-Ho alloys for biomedical applications. Scientific Reports, 2016, 6, 31990.	1.6	36
123	Compressive Deformation Characteristics of Open-Cell Mg Alloys with Controlled Cell Structure. Materials Transactions, 2002, 43, 1298-1305.	0.4	35
124	Sound absorption characteristics of aluminum foam with spherical cells. Journal of Applied Physics, 2011, 110, .	1.1	35
125	Wear Mechanism and Modeling of Tribological Behavior of Polycrystalline Diamond Tools When Cutting Ti6Al4V. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	1.3	35
126	Cold rolling deformation and annealing behavior of a β-type Ti–34Nb–25Zr titanium alloy for biomedical applications. Journal of Materials Research and Technology, 2020, 9, 2308-2318.	2.6	35

#	Article	IF	CITATIONS
127	Forging Characteristics of AZ31 Mg Alloy. Materials Transactions, 2001, 42, 414-417.	0.4	34
128	Fabrication of Al-based bulk metallic glass by mechanical alloying and vacuum hot consolidation. Journal of Alloys and Compounds, 2010, 501, 164-167.	2.8	34
129	Investigation of cell shape effect on the mechanical behaviour of open-cell metal foams. Computational Materials Science, 2012, 55, 1-9.	1.4	34
130	Effects of zirconium and strontium on the biocorrosion of Mg–Zr–Sr alloys for biodegradable implant applications. Journal of Materials Chemistry B, 2015, 3, 3714-3729.	2.9	34
131	Investigating Mg Biocorrosion In Vitro: Lessons Learned and Recommendations. Jom, 2019, 71, 1406-1413.	0.9	34
132	Enhanced corrosion resistance via phosphate conversion coating on pure Zn for medical applications. Corrosion Science, 2020, 169, 108602.	3.0	34
133	Simultaneously enhanced strength and ductility of Cu–xGe alloys through manipulating the stacking fault energy (SFE). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 569, 144-149.	2.6	33
134	Fabrication and characterization of TiO ₂ –ZrO ₂ –ZrTiO ₄ nanotubes on TiZr alloy manufactured via anodization. Journal of Materials Chemistry B, 2014, 2, 71-83.	2.9	33
135	Mechanical and corrosion properties of graphene nanoplatelet–reinforced Mg–Zr and Mg–Zr–Zn matrix nanocomposites for biomedical applications. Journal of Magnesium and Alloys, 2022, 10, 458-477.	5.5	33
136	Effect of heat-treatment atmosphere on the bond strength of apatite layer on Ti substrate. Dental Materials, 2008, 24, 1549-1555.	1.6	32
137	Effects of structural property and surface modification of Ti6Ta4Sn scaffolds on the response of SaOS2 cells for bone tissue engineering. Journal of Alloys and Compounds, 2010, 494, 323-329.	2.8	32
138	Porous shape memory alloy scaffolds for biomedical applications: a review. Physica Scripta, 2010, T139, 014070.	1.2	32
139	Titanium-niobium pentoxide composites for biomedical applications. Bioactive Materials, 2016, 1, 127-131.	8.6	32
140	An investigation of the mechanical and microstructural evolution of a TiNbZr alloy with varied ageing time. Scientific Reports, 2018, 8, 5737.	1.6	32
141	Tribological Behaviour of Pure Ti with a Nanocrystalline Surface Layer Under Different Loads. Tribology Letters, 2012, 45, 59-66.	1.2	31
142	Fabrication and properties of newly developed Ti35Zr28Nb scaffolds fabricated by powder metallurgy for bone-tissue engineering. Journal of Materials Research and Technology, 2019, 8, 3696-3704.	2.6	31
143	Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces. Advances in Colloid and Interface Science, 2020, 278, 102136.	7.0	31
144	Corrosion protection of mesoporous bioactive glass coating on biodegradable magnesium. Applied Surface Science, 2014, 303, 196-204.	3.1	30

#	Article	IF	CITATIONS
145	Biodegradable Znâ^'3Mgâ^'0.7Mg2Si composite fabricated by high-pressure solidification for bone implant applications. Acta Biomaterialia, 2021, 123, 407-417.	4.1	30
146	Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques. Acta Biomaterialia, 2020, 114, 485-496.	4.1	29
147	Fabrication of TiAl by blended elemental powder semisolid forming. Journal of Materials Science, 2001, 36, 1741-1745.	1.7	28
148	Effect of relaxation on pressure sensitivity index in a Zr-based metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 58-62.	2.6	28
149	Mg-based metallic glass/titanium interpenetrating phase composite with high mechanical performance. Applied Physics Letters, 2009, 95, .	1.5	28
150	Study on the Role of Stearic Acid and Ethylene-bis-stearamide on the Mechanical Alloying of a Biomedical Titanium Based Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1409-1420.	1.1	28
151	<i>In vitro</i> osteoblastâ€like cell proliferation on nanoâ€hydroxyapatite coatings with different morphologies on a titaniumâ€niobium shape memory alloy. Journal of Biomedical Materials Research - Part A, 2010, 95A, 766-773.	2.1	28
152	Microstructure and mechanical properties of high-pressure-assisted solidification of in situ Al–Mg2Si composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 9-15.	2.6	28
153	Realization and characterization of double-layer Ca-P coating on WE43 Mg alloy for biomedical applications. Surface and Coatings Technology, 2020, 398, 126091.	2.2	28
154	Sol-gel derived HA/TiO2 double coatings on Ti scaffolds for orthopaedic applications. Transactions of Nonferrous Metals Society of China, 2006, 16, s209-s216.	1.7	27
155	Role of Process Control Agent in the Synthesis of Multiâ€Walled Carbon Nanotubes Reinforced Titanium Metal Matrix Powder Mixtures. Advanced Engineering Materials, 2016, 18, 294-303.	1.6	27
156	Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications. Acta Biomaterialia, 2022, 142, 361-373.	4.1	27
157	Bone Formation Following Implantation of Titanium Sponge Rods into Humeral Osteotomies in Dogs: A Histological and Histometrical Study. Clinical Implant Dentistry and Related Research, 2010, 12, 72-79.	1.6	26
158	Investigation and modeling of flank wear process of different PCD tools in cutting titanium alloy Ti6Al4V. International Journal of Advanced Manufacturing Technology, 2018, 95, 719-733.	1.5	26
159	Recent Progress in Capacity Enhancement of LiFePO4 Cathode for Li-Ion Batteries. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	1.1	25
160	Energy Absorption and Crushing Behaviour of Foam-Filled Aluminium Tubes. Materials Transactions, 2005, 46, 2633-2636.	0.4	24
161	Degradation of the strength of porous titanium after alkali and heat treatment. Journal of Alloys and Compounds, 2009, 485, 316-319.	2.8	24
162	Microstructures, mechanical properties and in vitro corrosion behaviour of biodegradable Mg–Zr–Ca alloys. Journal of Materials Science, 2013, 48, 1632-1639.	1.7	24

#	Article	IF	CITATIONS
163	Dynamic behaviour of high strength steel parts developed through laser assisted direct metal deposition. Materials & Design, 2014, 64, 650-659.	5.1	24
164	Mechanical properties, corrosion, and biocompatibility of Mgâ€Zrâ€Srâ€Dy alloys for biodegradable implant applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2425-2434.	1.6	24
165	Effect of thermomechanical treatment on the mechanical and microstructural evolution of a β-type Ti-40.7Zr–24.8Nb alloy. Bioactive Materials, 2019, 4, 303-311.	8.6	24
166	The Application of the Rare Earths to Magnesium and Titanium Metallurgy in Australia. Advanced Materials, 2020, 32, e1901715.	11.1	24
167	Length-scale dependent deformation, strengthening, and ductility of fcc/fcc Ni/Al nanolaminates using micropillar compression testing. Acta Materialia, 2020, 193, 318-328.	3.8	24
168	Machinablility of titanium matrix composites (TMC) reinforced with multi-walled carbon nanotubes. Journal of Manufacturing Processes, 2020, 56, 131-146.	2.8	24
169	A Review of Metal Silicides for Lithium-Ion Battery Anode Application. Acta Metallurgica Sinica (English Letters), 2021, 34, 291-308.	1.5	24
170	Mechanical and corrosion properties of extruded Mg–Zr–Sr alloys for biodegradable implant applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142192.	2.6	24
171	Corrosion and Mechanical Properties of AZ91D Magnesium Alloy Fabricated by Solid Recycling Process. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2001, 65, 621-626.	0.2	23
172	Corrosion and Mechanical Properties of Recycled 5083 Aluminum Alloy by Solid State Recycling. Materials Transactions, 2003, 44, 1284-1289.	0.4	23
173	Nanogravel structured NiO/Ni foam as electrode for high-performance lithium-ion batteries. Ionics, 2015, 21, 2709-2723.	1.2	23
174	Effects of Mg ₁₇ Sr ₂ Phase on the Bio orrosion Behavior of Mg–Zr–Sr Alloys. Advanced Engineering Materials, 2016, 18, 259-268.	1.6	23
175	Nano-tribological behavior of graphene nanoplatelet–reinforced magnesium matrix nanocomposites. Journal of Magnesium and Alloys, 2020, 9, 895-895.	5.5	23
176	Crushing Simulation of Foam-Filled Aluminium Tubes. Materials Transactions, 2007, 48, 1901-1906.	0.4	22
177	Zinc phosphate, zinc oxide, and their dual-phase coatings on pure Zn foam with good corrosion resistance, cytocompatibility, and antibacterial ability for potential biodegradable bone-implant applications. Chemical Engineering Journal, 2022, 450, 137946.	6.6	22
178	Fabrication of nanoscale Ti honeycombs by focused ion beam. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 344, 365-367.	2.6	21
179	Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration. International Journal of Nanomedicine, 2013, 8, 2887.	3.3	21
180	Manufacturing of graded titanium scaffolds using a novel space holder technique. Bioactive Materials, 2017, 2, 248-252.	8.6	21

#	Article	IF	CITATIONS
181	Microstructural evolution and its influence on the mechanical properties of a thermomechanically processed β Ti–32Zr–30Nb alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 719, 112-123.	2.6	21
182	Title is missing!. Journal of Materials Science, 2000, 35, 2099-2105.	1.7	20
183	Biodegradable Mg–Zr–Ca alloys for bone implant materials. Materials Technology, 2012, 27, 49-51.	1.5	19
184	The impact of Co/La ratios on microstructure and magnetic properties of the Sr0.75â^'Ca0.25La Fe12â^'Co O19 hexaferrites. Journal of Magnetism and Magnetic Materials, 2015, 384, 64-69.	1.0	19
185	Selective laser melting in biomedical manufacturing. , 2020, , 235-269.		19
186	Study of TiO ₂ -Coated α-Fe ₂ O ₃ Composites and the Oxygen-Defects Effect on the Application as the Anode Materials of High-Performance Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11666-11673.	2.5	19
187	Effect of Anodized TiO ₂ –Nb ₂ O ₅ –ZrO ₂ Nanotubes with Different Nanoscale Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Interfaces, 2020, 12, 6776-6787.	4.0	19
188	Impact of scandium on mechanical properties, corrosion behavior, friction and wear performance, and cytotoxicity of a β-type Ti–24Nb–38Zr–2Mo alloy for orthopedic applications. Acta Biomaterialia, 2021, 134, 791-803.	4.1	19
189	Microstructures and mechanical properties of as cast Mg–Zr–Ca alloys for biomedical applications. Materials Technology, 2012, 27, 52-54.	1.5	18
190	Surface Characterization and Biocompatibility of Hydroxyapatite Coating on Anodized TiO ₂ Nanotubes via PVD Magnetron Sputtering. Langmuir, 2021, 37, 4984-4996.	1.6	18
191	Influence of deformation-induced heating on the bond strength of rolled metal multilayers. Materials Letters, 2009, 63, 2300-2302.	1.3	17
192	Impact of ruthenium on mechanical properties, biological response and thermal processing of β-type Ti–Nb–Ru alloys. Acta Biomaterialia, 2017, 48, 461-467.	4.1	17
193	The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications. Materials, 2018, 11, 531.	1.3	17
194	Effects of Heat Treatment on the Compressive Properties of AZ91 Mg Foam. Materials Transactions, JIM, 2000, 41, 1192-1195.	0.9	16
195	Mechanical Properties and Blow Forming of Rolled AZ31 Mg Alloy Sheet. Materials Transactions, 2003, 44, 484-489.	0.4	16
196	Ultrahigh Strength Copper Obtained by Surface Mechanical Attrition Treatment at Cryogenic Temperature. Journal of Materials Engineering and Performance, 2015, 24, 5058-5064.	1.2	16
197	A study of the capacity fade of porous NiO/Ni foam as negative electrode for lithium-ion batteries. Ionics, 2016, 22, 173-184.	1.2	16
198	Production methods and characterization of porous Mg and Mg alloys for biomedical applications. , 2017, , 25-82.		16

#	Article	IF	CITATIONS
199	Strain rate dependence of tensile strength and ductility of nano and ultrafine grained coppers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 341-349.	2.6	16
200	Mechanical properties of electrodeposited nanocrystalline and ultrafine-grained Zn-Sn coatings. Surface and Coatings Technology, 2018, 333, 71-80.	2.2	16
201	A biodegradable in situ Zn–Mg2Ge composite for bone-implant applications. Acta Biomaterialia, 2022, 146, 478-494.	4.1	16
202	Effects of Cell Geometry on the Compressive Properties of Nickel Foams. Materials Transactions, JIM, 2000, 41, 1136-1138.	0.9	15
203	Thermal stability of the Al70Ni10Ti10Zr5Ta5 amorphous alloy powder fabricated by mechanical alloying. Journal of Alloys and Compounds, 2010, 496, 313-316.	2.8	15
204	Investigation of bacterial attachment on hydroxyapatite-coated titanium and tantalum. International Journal of Surface Science and Engineering, 2014, 8, 255.	0.4	15
205	Development of beta-type Ti-Nb-Zr-Mo alloys for orthopedic applications. Applied Materials Today, 2021, 22, 100968.	2.3	15
206	Recent Progress on Nanocrystalline Metallic Materials for Biomedical Applications. Nanomaterials, 2022, 12, 2111.	1.9	15
207	Microstructural characteristics of a nanoeutectic Ag–Cu alloy processed by surface mechanical attrition treatment. Scripta Materialia, 2013, 68, 499-502.	2.6	14
208	Effect of thermomechanical treatment on the superelasticity of Ti–7.5Nb–4Mo–2Sn biomedical alloy. Materials Science and Engineering C, 2014, 44, 76-86.	3.8	14
209	Enhanced electrochemical performance of Li-ion batteries with nanoporous titania as negative electrodes. Journal of Energy Chemistry, 2015, 24, 157-170.	7.1	14
210	Cell response and bioactivity of titania–zirconia–zirconium titanate nanotubes with different nanoscale topographies fabricated in a non-aqueous electrolyte. Biomaterials Science, 2015, 3, 636-644.	2.6	14
211	Effect of ultrasonic stirring on the microstructure and mechanical properties of in situ Mg2Si/Al composite. Materials Chemistry and Physics, 2016, 178, 112-118.	2.0	14
212	High-strength Ni/Al nanolaminates fabricated by magnetron sputtering and their nanoindentation and nanowear behaviors. Materialia, 2019, 6, 100263.	1.3	14
213	Microstructure, mechanical and corrosion properties of hot-pressed graphene nanoplatelets-reinforced Mg matrix nanocomposites for biomedical applications. Journal of Alloys and Compounds, 2021, 887, 161379.	2.8	14
214	Strontium content and collagenâ€l coating of Magnesium–Zirconia–Strontium implants influence osteogenesis and bone resorption. Clinical Oral Implants Research, 2016, 27, e15-24.	1.9	13
215	Metallic scaffolds manufactured by selective laser melting for biomedical applications. , 2017, , 1-23.		13
216	Individual layer thickness-dependent microstructures and mechanical properties of fcc/fcc Ni/Al nanolaminates and their strengthening mechanisms. Materialia, 2019, 6, 100347.	1.3	13

#	Article	IF	CITATIONS
217	Additive manufacturing of functionally graded porous titanium scaffolds for dental applications. , 2022, 139, 213018.		13
218	Metastable structures of immiscible system induced by mechanical alloying. Journal of Physics Condensed Matter, 1997, 9, 11077-11083.	0.7	12
219	In vitro behavior of human osteoblast-like cells (SaOS2) cultured on surface modified titanium and titanium–zirconium alloy. Materials Science and Engineering C, 2011, 31, 1545-1552.	3.8	12
220	Corrosion of Ti35Zr28Nb in Hanks' solution and 3.5 wt% NaCl solution. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 197-206.	0.8	12
221	Influence of Heat Treatments on Microstructure and Mechanical Properties of Ti–26Nb Alloy Elaborated In Situ by Laser Additive Manufacturing with Ti and Nb Mixed Powder. Materials, 2019, 12, 61.	1.3	12
222	Optimized Fabrication and Characterization of TiO ₂ –Nb ₂ O ₅ –ZrO ₂ Nanotubes on β-Phase TiZr ₃₅ Nb ₂₈ Alloy for Biomedical Applications via the Taguchi Method. ACS Biomaterials Science and Engineering, 2019, 5, 2750-2761.	2.6	12
223	A biodegradable Fe/Zn–3Cu composite with requisite properties for orthopedic applications. Acta Biomaterialia, 2022, 146, 506-521.	4.1	12
224	Influence of stacking fault energy and strain rate on the mechanical properties in Cu and Cu–Al–Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 174-177.	2.6	11
225	Effect of stacking fault energy and strain rate on the mechanical properties of Cu and Cu alloys. Journal of Alloys and Compounds, 2013, 573, 1-5.	2.8	11
226	Metal scaffolds processed by electron beam melting for biomedical applications. , 2017, , 83-110.		11
227	Impact of the rare earth elements scandium and yttrium on beta-type Ti-24Nb-38Zr-2Mo-base alloys for orthopedic applications. Materialia, 2020, 9, 100586.	1.3	11
228	Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties, tissue engineering viability, and enhanced biocompatibility. , 2023, 1, 100004.		11
229	New microstructure-property approach: Quenching/tempering treatment in gamma TiAl alloy. Scripta Metallurgica Et Materialia, 1995, 33, 1283-1288.	1.0	10
230	Elemental blended powders semisolid forming of Ti-Al based alloys. Journal of Materials Science, 2000, 35, 5927-5932.	1.7	10
231	Plastic deformation in the annealed Zr41Ti14Cu12.5Ni10Be22.5 bulk metal glass under indenter. Journal of Alloys and Compounds, 2009, 475, 501-505.	2.8	10
232	Theoretical study on behaviour of superplastic forming/diffusion bonding of bulk metallic glasses. Materials Science and Technology, 2010, 26, 361-366.	0.8	10
233	Osteoblast cell response to nanoscale SiO2/ZrO2 particulate-reinforced titanium composites and scaffolds by powder metallurgy. Journal of Materials Science, 2012, 47, 4410-4414.	1.7	10
234	The defect structures and mechanical properties of Cu and Cu–Al alloys processed by split Hopkinson pressure bar. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 406-409.	2.6	10

#	Article	IF	CITATIONS
235	Microstructures and mechanical properties of in situ TiC–β–Ti–Nb composites with ultrafine grains fabricated by high-pressure sintering. Scientific Reports, 2018, 8, 9496.	1.6	10
236	Surface modification of additively manufactured metallic biomaterials with active antipathogenic properties. , 2023, 1, 100001.		10
237	Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4Zr alloys for biomedical applications. Acta Biomaterialia, 2022, 149, 387-398.	4.1	10
238	Synthesis and characterization of nanostructured Ag on porous titania. Applied Surface Science, 2011, 257, 4836-4843.	3.1	9
239	Plastic deformation in Zr41Ti14Cu12.5Ni10Be22.5 bulk metal glass under Vickers indenter. Journal of Alloys and Compounds, 2008, 461, 173-177.	2.8	8
240	Bioactivating the Surfaces of Titanium by Sol-Gel Process. Materials Science Forum, 0, 614, 67-71.	0.3	8
241	Compressive deformation and damage of Mg-based metallic glass interpenetrating phase composite containing 30–70 vol% titanium. Journal of Materials Research, 2010, 25, 2192-2196.	1.2	8
242	Wear behaviour of DMD-generated high-strength steels using multi-factor experiment design on a pin-on-disc apparatus. International Journal of Advanced Manufacturing Technology, 2016, 87, 461-477.	1.5	8
243	Improvement on electrochemical performances of nanoporous titania as anode of lithium-ion batteries through annealing of pure titanium foils. Journal of Energy Chemistry, 2018, 27, 250-263.	7.1	8
244	Material selection for medical devices. , 2020, , 31-94.		8
245	Impact of rare earth elements on nanohardness and nanowear properties of beta-type Ti-24Nb-38Zr-2Mo alloy for medical applications. Materialia, 2020, 12, 100772.	1.3	8
246	In silico and in vivo studies of the effect of surface curvature on the osteoconduction of porous scaffolds. Biotechnology and Bioengineering, 2022, 119, 591-604.	1.7	8
247	Nutrient alloying elements in biodegradable metals: a review. Journal of Materials Chemistry B, 2021, 9, 9806-9825.	2.9	8
248	Composition dependency of the glass forming ability (GFA) in Mg–Ni–Si system by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 35-39.	2.6	7
249	Influences of recovery and recrystallization on the superelastic behavior of a β titanium alloy made by suction casting. Journal of Materials Chemistry B, 2014, 2, 5972.	2.9	7
250	Biocompatibility of Nanoscale Hydroxyapatite Coating on TiO2 Nanotubes. Materials, 2019, 12, 1979.	1.3	7
251	Individual layer thickness-dependent nanoindentation and nanotribological behaviors of Ta/Co nanolaminates. Tribology International, 2021, 156, 106845.	3.0	7
252	Microstructural Characterization and Mechanical Properties of Mg-Zr-Ca Alloys Prepared by Hot-Extrusion for Biomedical Applications. Advanced Science Letters, 2011, 4, 2860-2863.	0.2	7

#	Article	IF	CITATIONS
253	Fatigue and corrosion fatigue behaviors of biodegradable Zn-Li and Zn-Cu-Li under physiological conditions. Journal of Materials Science and Technology, 2022, 131, 48-59.	5.6	7
254	Title is missing!. Journal of Materials Science Letters, 2002, 21, 1695-1697.	0.5	6
255	Effects of the Density on Compressive Properties in Cellular Aluminum Produced by the Sintering Method. Materials Transactions, 2004, 45, 327-329.	0.4	6
256	Bioactive Hydroxyapatite Coating on Titanium-Niobium Alloy through a Sol-Gel Process. Materials Science Forum, 0, 618-619, 325-328.	0.3	6
257	Apatite Formation on Nano-Structured Titanium and Niobium Surface. Materials Science Forum, 0, 614, 85-92.	0.3	6
258	Role of stacking fault energy and strain rate in strengthening of Cu and Cu–Al alloys. Journal of Materials Research, 2014, 29, 1747-1754.	1.2	6
259	Phase field simulation of spinodal decomposition in Zr–Nb alloys for implant materials. Journal of Applied Physics, 2019, 126, 085102.	1.1	6
260	Corrosion of porous Ti35Zr28Nb in Hanks' solution and 3.5 wt% NaCl. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 529-536.	0.8	6
261	Aggravated stress fluctuation and mechanical size effects of nanoscale lamellar bone pillars. NPG Asia Materials, 2021, 13, .	3.8	6
262	Diffusion ledge mechanism of massive Î ³ transformation in quenched TiAl alloys. Journal of Materials Science Letters, 1999, 18, 927-929.	0.5	5
263	Focused ion beam fabrication of amorphous and polycrystalline Fe78B13Si9 alloys. Journal of Materials Science Letters, 2002, 21, 837-839.	0.5	5
264	Phase formation and physical properties of mechanically alloyed amorphous 55Mg35Ni10Si. Journal of Non-Crystalline Solids, 2006, 352, 3244-3248.	1.5	5
265	INFLUENCE OF POROSITY ON SHAPE MEMORY BEHAVIOR OF POROUS TINI SHAPE MEMORY ALLOY. Functional Materials Letters, 2008, 01, 215-219.	0.7	5
266	Extrusion properties of a Zr-based bulk metallic glass. Materials Letters, 2009, 63, 1317-1319.	1.3	5
267	Plastic deformation in a partially crystallized Zr-based BMG under Vickers indenter. Journal of Alloys and Compounds, 2009, 484, 886-890.	2.8	5
268	Effect of Pore Size on Mechanical Properties of Titanium Foams. Materials Science Forum, 2010, 654-656, 827-830.	0.3	5
269	Wear Behaviour of Pure Ti with a Nanocrystalline Surface Layer. Applied Mechanics and Materials, 0, 66-68, 1500-1504.	0.2	5
270	Ti–SrO metal matrix composites for bone implant materials. Journal of Materials Chemistry B, 2014, 2, 5854-5861.	2.9	5

#	Article	IF	CITATIONS
271	Disparate micro-mechanical behaviors of adjacent bone lamellae through in situ SEM micropillar compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141903.	2.6	5
272	Design of a New Biocompatible Ti-Based Shape Memory Alloy and Its Superelastic Deformation Behaviour. Materials Science Forum, 2010, 654-656, 2087-2090.	0.3	4
273	Impact Response and Energy Absorption of Aluminium Foam-Filled Tubes. Applied Mechanics and Materials, 2012, 152-154, 436-439.	0.2	4
274	A Brief Review of Biomedical Shape Memory Alloys by Powder Metallurgy. Key Engineering Materials, 0, 520, 195-200.	0.4	4
275	Microstructure and superelasticity of a biomedical β-type titanium alloy under various processing routes. Applied Materials Today, 2016, 5, 41-51.	2.3	4
276	In Vitro Degradation Behaviors of Manganese-Calcium Phosphate Coatings on an Mg-Ca-Zn Alloy. Scanning, 2018, 2018, 1-9.	0.7	4
277	Morphology and phase structure of nanosized Co powders prepared by one-step reduction combined with high-energy ball milling. Journal of Alloys and Compounds, 2019, 800, 490-497.	2.8	4
278	Titanium Alloys, Including Nitinol. , 2020, , 229-247.		4
279	Biodegradable metallic suture anchors: A review. , 2023, 1, 100005.		4
280	<i>In Vitro</i> Cytotoxicity of Binary Ti Alloys for Bone Implants. Materials Science Forum, 0, 618-619, 295-298.	0.3	3
281	Phase transformation in oil-quenched Ni–21.2Al–20Fe alloy. Journal of Alloys and Compounds, 2011, 509, 1644-1647.	2.8	3
282	Fabrication and characterisation of microporous titanium. Powder Metallurgy, 2011, 54, 56-58.	0.9	3
283	The role of temperature in the strengthening of Cu–Al alloys processed by surface mechanical attrition treatment. Journal of Materials Research, 2015, 30, 1670-1677.	1.2	3
284	Structural and mechanical properties of magnetron-sputtered Al–Au thin films. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	3
285	Investigation on Composition, Mechanical Properties, and Corrosion Resistance of Mg-0.5Ca-X(Sr, Zr,) Tj ETQq1	1 0,7843 0.7	14 rgBT /Ove
286	Surface modifications of metallic biomaterials. , 2020, , 387-424.		3
287	Titanium alloys. , 2021, , 157-187.		3

288 XAFS and XRD studies on local and long-range structures of mechanically alloyed AlxTi1â^'xsolid solutions. Journal of Synchrotron Radiation, 1999, 6, 725-727.

1.0 2

#	Article	IF	CITATIONS
289	Microstructure and Mechanical Properties of AZ31 and ZK60 Magnesium Alloys Processed by Open Die Forging Zairyo/Journal of the Society of Materials Science, Japan, 2001, 50, 1228-1232.	0.1	2
290	Solid-state recycling from machined scraps to a cellular solid. Journal of Materials Research, 2002, 17, 2783-2786.	1.2	2
291	Preparation of Mg 55 Ni 35 Si 10 Amorphous Powders by Mechanical Alloying and Consolidation by Vacuum Hot Pressing. Chinese Physics Letters, 2006, 23, 2161-2164.	1.3	2
292	Mechanical Property and Microstructure of Ti-Ta-Ag Alloy for Biomedical Applications. Key Engineering Materials, 0, 520, 254-259.	0.4	2
293	A Newly Developed Biocompatible Titanium Alloy and its Scaffolding by Powder Metallurgy. Key Engineering Materials, 0, 520, 201-207.	0.4	2
294	Biomimetic Creation of Surfaces on Porous Titanium for Biomedical Applications. Advanced Materials Research, 0, 896, 259-262.	0.3	2
295	Powder metallurgy in manufacturing of medical devices. , 2020, , 159-190.		2
296	Introduction to biomedical manufacturing. , 2020, , 3-29.		2
297	Structural and electrochemical characterization of vanadium-excess Li3V2(PO4)3-LiVOPO4/C composite cathode material synthesized by sol–gel method. Journal of Solid State Electrochemistry, 2021, 25, 2127-2137.	1.2	2
298	Ultra-strong and ductile Ta/Co nanolaminates strengthened via grain-boundary expanding and interfacial sliding. Applied Materials Today, 2021, 23, 100983.	2.3	2
299	Consolidation of Titanium Tri-aluminide using by Spark Plasma Sintering Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44, 554-559.	0.1	1
300	Fabrication of Porous TiAl Intermetallic Compound by Self -propagating High Temperature Synthesis. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2003, 50, 848-850.	0.1	1
301	Damping properties of open cell microcellular pure Al foams. Materials Science and Technology, 2007, 23, 1336-1340.	0.8	1
302	Biomimetic Coating on Pure Titanium Submitted to Different Surface Treatments. Materials Science Forum, 2009, 618-619, 311-314.	0.3	1
303	Low frequency damping capacity in a strained Fe–Mn–Si alloy. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 338-343.	0.8	1
304	BIODEGRADABLE Mg-Zr-Ca ALLOYS FOR BONE IMPLANT MATERIALS. , 2011, , .		1
305	Fabrication of Ti14Nb4Sn Alloys for Bone Tissue Engineering Applications. Key Engineering Materials, 0, 520, 214-219.	0.4	1
306	Microstructures and Various Properties of Hot-Extruded Mg-Zr-Ca Alloys for Biomedical Applications. Applied Mechanics and Materials, 2012, 232, 162-166.	0.2	1

#	Article	IF	CITATIONS
307	Influence of Titanium Alloying Element Substrata on Bacterial Adhesion. Advanced Materials Research, 2012, 535-537, 992-995.	0.3	1
308	Nanotopography and surface chemistry of TiO2–ZrO2–ZrTiO4 nanotubular surfaces and the influence on their bioactivity and cell responses. , 2017, , 181-202.		1
309	Microstructures and Mechanical Properties of Hot-Rolled Mg–Zr–Ca Alloys for Biomedical Applications. Advanced Science Letters, 2012, 5, 898-900.	0.2	1
310	Preparation of Bioactive Porous Titanium-Molybdenum Alloy through Powder Metallurgy. Materials Science Forum, 2009, 620-622, 745-748.	0.3	0
311	Nucleation and Growth during Reactions in Accumulative Roll Bonding of Ti/Al Multilayers. Materials Science Forum, 0, 618-619, 429-432.	0.3	0
312	Effect of Structure Relaxation on the Plastic Deformation Behaviour in a Zr-Based BMG under Indenter. Materials Science Forum, 0, 618-619, 437-441.	0.3	0
313	Effects of Deformation-Induced Heating on Bond Strength of Rolled Metal Multilayer. Materials Science Forum, 2010, 654-656, 2579-2582.	0.3	Ο
314	Nanoscale SiO ₂ /ZrO ₂ Particulate-Reinforced Titanium Composites for Bone Implant Materials. Key Engineering Materials, 2012, 520, 242-247.	0.4	0
315	Biological Performances of Titanium Scaffolds: A Review. Advanced Materials Research, 2012, 535-537, 1634-1637.	0.3	Ο
316	Development of Bio-Compatible Metallic Structures Using Direct Metal Deposition Process. Advanced Materials Research, 0, 576, 141-145.	0.3	0
317	Preparation of Titanium/Strontia Composite by Powder Metallurgy for Biomedical Application. Key Engineering Materials, 0, 520, 248-253.	0.4	Ο
318	Compressive Properties of Solid and Porous Parts Made from High Strength Steel Alloys by Direct Metal Deposition. Advanced Materials Research, 0, 974, 141-146.	0.3	0
319	The bioactivity and bone cell attachment of nanotubular layers anodized in aqueous and nonaqueous electrolytes. , 2017, , 217-239.		0
320	Preface to SPECIAL ISSUE: Advances in Metallic Biomaterials. Science China Materials, 2018, 61, 439-439.	3.5	0
321	Biodegradable alloys. , 2021, , 189-228.		Ο
322	SHEAR BAND EVOLUTION AND NANOSTRUCTURE FORMATION IN TITANIUM BY COLD ROLLING. , 2011, , .		0
323	Bioengineering International joins the Family of Platinum Open Access Journals. Bioengineering International, 2019, 1, 001-001.	0.0	0
324	Characterization techniques for metallic biomaterials. , 2020, , 517-545.		0