Naoya Morioka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1440532/publications.pdf

Version: 2024-02-01

840776 752698 26 579 11 20 citations h-index g-index papers 27 27 27 635 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nature Materials, 2022, 21, 67-73.	27.5	80
2	Spin-Optical Dynamics and Quantum Efficiency of a Single V1 Center in Silicon Carbide. Physical Review Applied, 2022, 17, .	3.8	5
3	Nanofabricated and Integrated Colour Centres in Silicon Carbide with High-Coherence Spin-Optical Properties., 2021,,.		O
4	Spectrally reconfigurable quantum emitters enabled by optimized fast modulation. Npj Quantum Information, 2020, 6, .	6.7	38
5	in <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mn>4</mml:mn><mml:mi>H</mml:mi></mml:math> - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:mi>Si</mml:mi><mml:mi< td=""><td>3.8</td><td>47</td></mml:mi<></mml:mrow></mml:math 	3.8	47
6	mathvariant="normal">C. Physical Review Applied, 2020, 13, . Developing silicon carbide for quantum spintronics. Applied Physics Letters, 2020, 116, .	3.3	101
7	Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide. Nature Communications, 2020, 11, 2516.	12.8	56
8	Electrical Charge State Manipulation of Single Silicon Vacancies in a Silicon Carbide Quantum Optoelectronic Device. Nano Letters, 2019, 19, 7173-7180.	9.1	61
9	Laser Writing of Scalable Single Color Centers in Silicon Carbide. Nano Letters, 2019, 19, 2377-2383.	9.1	70
10	Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions. Nature Communications, 2019, 10, 5569.	12.8	43
11	Real-time first-principles simulations of thermionic emission from N-doped diamond surfaces. Applied Physics Express, 2018, 11, 064301.	2.4	4
12	Enhanced thermionic electron emission from a stacked structure of phosphorusâ€doped diamond with a nitrogenâ€doped diamond surface layer. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2650-2653.	1.8	8
13	Impacts of orientation and cross-sectional shape on hole mobility of Si nanowire MOSFETs., 2015,,.		O
14	Orientation and size effects on phonon-limited hole mobility in rectangular cross-sectional germanium nanowires. , 2014, , .		0
15	Geometrical and band-structure effects on phonon-limited hole mobility in rectangular cross-sectional germanium nanowires. Journal of Applied Physics, 2014, 116, 235701.	2.5	5
16	Quantum-confinement effects on conduction band structure of rectangular cross-sectional GaAs nanowires. Journal of Applied Physics, 2014, 115, 053713.	2.5	3
17	Etching-limiting process and origin of loading effects in silicon etching with hydrogen chloride gas. Japanese Journal of Applied Physics, 2014, 53, 016502.	1.5	2
18	Phonon-Limited Electron Mobility in Rectangular Cross-Sectional Ge Nanowires. IEEE Transactions on Electron Devices, 2014, 61, 1993-1998.	3.0	11

#	Article	IF	CITATIONS
19	Orientation and Shape Effects on Ballistic Transport Properties in Gate-All-Around Rectangular Germanium Nanowire nFETs. IEEE Transactions on Electron Devices, 2013, 60, 944-950.	3.0	11
20	Size and geometric effects on conduction band structure of GaAs nanowires. , 2013, , .		0
21	Orientation and size effects on ballistic electron transport properties in gate-all-around rectangular germanium nanowire FETs. , 2012, , .		O
22	Rate Determining Process and Loading Effects in Si Etching with HCl Gas., 2012,,.		0
23	Bandgap shift by quantum confinement effect in ã€^100〉 Si-nanowires derived from threshold-voltage shift of fabricated metal-oxide-semiconductor field effect transistors and theoretical calculations. Journal of Applied Physics, 2011, 109, 064312.	2.5	6
24	Quantum-confinement effect on holes in silicon nanowires: Relationship between wave function and band structure. Journal of Applied Physics, 2011, 109, 064318.	2.5	16
25	Tight-binding study of size and geometric effects on hole effective mass of silicon nanowires. , 2010, , .		0
26	Mobility oscillation by one-dimensional quantum confinement in Si-nanowire metal-oxide-semiconductor field effect transistors. Journal of Applied Physics, 2009, 106, 034312.	2.5	10