
David F Kashatus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1440468/publications.pdf Version: 2024-02-01

DAVID F KASHATUS

#	Article	IF	CITATIONS
1	Erk2 Phosphorylation of Drp1 Promotes Mitochondrial Fission and MAPK-Driven Tumor Growth. Molecular Cell, 2015, 57, 537-551.	4.5	509
2	RALA and RALBP1 regulate mitochondrial fission atÂmitosis. Nature Cell Biology, 2011, 13, 1108-1115.	4.6	327
3	Mitochondrial control by DRP1 in brain tumor initiating cells. Nature Neuroscience, 2015, 18, 501-510.	7.1	306
4	Tumour maintenance is mediated by eNOS. Nature, 2008, 452, 646-649.	13.7	289
5	NF-κB and IκBα Are Found in the Mitochondria. Journal of Biological Chemistry, 2003, 278, 2963-2968.	1.6	171
6	Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes and Development, 2006, 20, 225-235.	2.7	123
7	Dynamin-Related Protein 1 Deficiency Promotes Recovery from AKI. Journal of the American Society of Nephrology: JASN, 2018, 29, 194-206.	3.0	110
8	Aurora-A Phosphorylates, Activates, and Relocalizes the Small GTPase RalA. Molecular and Cellular Biology, 2010, 30, 508-523.	1.1	100
9	Drp1 Promotes KRas-Driven Metabolic Changes to Drive Pancreatic Tumor Growth. Cell Reports, 2019, 28, 1845-1859.e5.	2.9	93
10	The p65/RelA Subunit of NF-κB Suppresses the Sustained, Antiapoptotic Activity of Jun Kinase Induced by Tumor Necrosis Factor. Molecular and Cellular Biology, 2002, 22, 8175-8183.	1.1	80
11	Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	75
12	Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Scientific Reports, 2018, 8, 79.	1.6	73
13	Targeting eNOS in Pancreatic Cancer. Cancer Research, 2012, 72, 4472-4482.	0.4	54
14	The Nuclear Factor κB Subunits RelA/p65 and c-Rel Potentiate but Are Not Required for Ras-Induced Cellular Transformation. Cancer Research, 2004, 64, 7248-7255.	0.4	52
15	Ral GTPases in tumorigenesis: Emerging from the shadows. Experimental Cell Research, 2013, 319, 2337-2342.	1.2	52
16	Label-Free Quantification of Intracellular Mitochondrial Dynamics Using Dielectrophoresis. Analytical Chemistry, 2017, 89, 5757-5764.	3.2	52
17	PIM kinases alter mitochondrial dynamics and chemosensitivity in lung cancer. Oncogene, 2020, 39, 2597-2611.	2.6	45
18	Conditional MitoTimer reporter mice for assessment of mitochondrial structure, oxidative stress, and mitophagy. Mitochondrion, 2019, 44, 20-26.	1.6	43

DAVID F KASHATUS

#	Article	IF	CITATIONS
19	The regulation of tumor cell physiology by mitochondrial dynamics. Biochemical and Biophysical Research Communications, 2018, 500, 9-16.	1.0	42
20	Ral activation promotes melanomagenesis. Oncogene, 2010, 29, 4859-4864.	2.6	38
21	Expression of Nuclear Factor-kappaB Family Proteins in Hepatocellular Carcinomas. Oncology, 2007, 72, 97-104.	0.9	37
22	cPLA2 Regulates the Expression of Type I Interferons and Intracellular Immunity to Chlamydia trachomatis. Journal of Biological Chemistry, 2010, 285, 21625-21635.	1.6	37
23	The Interplay between Oncogenic Signaling Networks and Mitochondrial Dynamics. Antioxidants, 2017, 6, 33.	2.2	31
24	Mitochondrial dynamics in cancer stem cells. Cellular and Molecular Life Sciences, 2021, 78, 3803-3816.	2.4	27
25	Mito Hacker: a set of tools to enable high-throughput analysis of mitochondrial network morphology. Scientific Reports, 2020, 10, 18941.	1.6	23
26	Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle. Free Radical Biology and Medicine, 2018, 117, 180-190.	1.3	21
27	<i>miRâ€206</i> family is important for mitochondrial and muscle function, but not essential for myogenesis in vitro. FASEB Journal, 2020, 34, 7687-7702.	0.2	17
28	RalA and PLD1 promote lipid droplet growth in response to nutrient withdrawal. Cell Reports, 2021, 36, 109451.	2.9	16
29	Breaking up is hard to do. Small GTPases, 2011, 2, 329-333.	0.7	10
30	Regulation of mitochondrial fission by GIPC-mediated Drp1 retrograde transport. Molecular Biology of the Cell, 2022, 33, mbcE21060286.	0.9	10
31	Highâ€ŧhroughput detection and quantification of mitochondrial fusion through imaging flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 708-719.	1.1	9
32	RalA and RalB relocalization to depolarized mitochondria depends on clathrin-mediated endocytosis and facilitates TBK1 activation. PLoS ONE, 2019, 14, e0214764.	1.1	9
33	ISL2 is a putative tumor suppressor whose epigenetic silencing reprograms the metabolism of pancreatic cancer. Developmental Cell, 2022, 57, 1331-1346.e9.	3.1	9
34	Restraining the Divider: A Drp1-Phospholipid Interaction Inhibits Drp1 Activity and Shifts the Balance from Mitochondrial Fission to Fusion. Molecular Cell, 2016, 63, 913-915.	4.5	8
35	Detection and Quantification of Mitochondrial Fusion Using Imaging Flow Cytometry. Current Protocols in Cytometry, 2017, 81, 9.53.1-9.53.13.	3.7	1
36	MDVs: Spare the SOD and Spoil the Bug. Cell Host and Microbe, 2018, 24, 616-618.	5.1	1

#	Article	IF	CITATIONS
37	A Role for eNOS in Oncogenic Ras-Driven Cancer. , 2010, , 23-38.		1
38	An In Vitro System to Evaluate the Scaffold Function of the RalA Effector Protein RalBP1. Methods in Molecular Biology, 2014, 1120, 207-216.	0.4	0