List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1440261/publications.pdf Version: 2024-02-01

<u>ΡΚΚΛΟΠΟ</u>

#	Article	IF	CITATIONS
1	Joint optimization of software time-to-market and testing duration using multi-attribute utility theory. Annals of Operations Research, 2022, 312, 305-332.	2.6	7
2	Software reliability prediction and release time management with coverage. International Journal of Quality and Reliability Management, 2022, 39, 741-761.	1.3	6
3	Hierarchical framework for analysing the challenges of implementing industrial Internet of Things in manufacturing industries using ISM approach. International Journal of Systems Assurance Engineering and Management, 2022, 13, 2356-2370.	1.5	8
4	Unified framework to assess software reliability and determine optimal release time in presence of fault reduction factor, error generation and fault removal efficiency. International Journal of Systems Assurance Engineering and Management, 2022, 13, 2429-2441.	1.5	10
5	Analyzing the impact of review recency on helpfulness through econometric modeling. International Journal of Systems Assurance Engineering and Management, 2021, 12, 104-111.	1.5	8
6	On interdisciplinarity between product adoption and vulnerability discovery modeling. International Journal of Systems Assurance Engineering and Management, 2021, 12, 176-187.	1.5	2
7	Three-dimensional wiener process based entropy prediction modelling for OSS. International Journal of Systems Assurance Engineering and Management, 2021, 12, 188-198.	1.5	1
8	Technology diffusion model with change in adoption rate and repeat purchases: a case of consumer balking. International Journal of Systems Assurance Engineering and Management, 2021, 12, 29-36.	1.5	4
9	Optimal decisions on software release and post-release testing: A unified approach. Yugoslav Journal of Operations Research, 2021, 31, 165-180.	0.5	4
10	Measuring and Evaluating Best Practices in Agile Testing Environment Using AHP. Asset Analytics, 2021, , 475-495.	0.4	0
11	Predicting diffusion dynamics and launch time strategy for mobile telecommunication services: an empirical analysis. Information Technology and Management, 2021, 22, 33-51.	1.4	3
12	Changeâ€pointsâ€based software scheduling. Quality and Reliability Engineering International, 2021, 37, 3282-3296.	1.4	5
13	Should Software Testing Continue After Release of a Software: A New Perspective. , 2021, , 709-737.		3
14	Multi-generational technology management in a segmented environment. International Journal of Product Development, 2020, 24, 1.	0.2	4
15	Software release and testing stop time decision with change point. International Journal of Systems Assurance Engineering and Management, 2020, 11, 196-207.	1.5	9
16	Two-phase methodology for prioritization and utility assessment of software vulnerabilities. International Journal of Systems Assurance Engineering and Management, 2020, 11, 289-300.	1.5	4
17	Analytical evaluation of agile success factors influencing quality in software industry. International Journal of Systems Assurance Engineering and Management, 2020, 11, 247-257.	1.5	10
18	Evaluation and Selection of Software Vulnerabilities. International Journal of Reliability, Quality and Safety Engineering, 2020, 27, 2040014.	0.4	2

#	Article	IF	CITATIONS
19	Modeling technology diffusion: a study based on market coverage and advertising efforts. International Journal of Systems Assurance Engineering and Management, 2020, 11, 154-162.	1.5	5
20	Entropy-Based Two-Dimensional Software Reliability Growth Modeling for Open-Source Software Incorporating Change-Point. International Journal of Reliability, Quality and Safety Engineering, 2020, 27, 2040009.	0.4	9
21	Effort based release time of software for detection and correction processes using MAUT. International Journal of Systems Assurance Engineering and Management, 2020, 11, 367-378.	1.5	9
22	Assessment of Software Vulnerabilities using Best-Worst Method and Two-Way Analysis. International Journal of Mathematical, Engineering and Management Sciences, 2020, 5, 328-342.	0.4	7
23	Determining Software Time-to-Market and Testing Stop Time when Release Time is a Change-Point. International Journal of Mathematical, Engineering and Management Sciences, 2020, 5, 208-224.	0.4	4
24	Predicting Code Merge Conflicts and Selecting Optimal Code Branching Strategy for Quality Improvement in Banking Sector. Asset Analytics, 2019, , 15-33.	0.4	0
25	Software Release Time Problem Revisited. Asset Analytics, 2019, , 295-305.	0.4	2
26	Optimizing the Defect Prioritization in Enterprise Application Integration. Advances in Intelligent Systems and Computing, 2019, , 585-597.	0.5	2
27	Modeling Technological Substitution by Incorporating Dynamic Adoption Rate. International Journal of Innovation and Technology Management, 2019, 16, .	0.8	8
28	Ranking hotels using aspect ratings based sentiment classification and interval-valued neutrosophic TOPSIS. International Journal of Systems Assurance Engineering and Management, 2019, 10, 973-983.	1.5	23
29	Measuring Severity of Attributes That Create Vulnerabilities in Websites and Software Applications Using Two Way Assessment Technique. Journal of Cases on Information Technology, 2019, 21, 39-50.	0.7	0
30	Modeling innovation adoption incorporating time lag between awareness and adoption process. International Journal of Systems Assurance Engineering and Management, 2019, 10, 83-90.	1.5	10
31	Modelling Fault Detection Using SRGM in Agile Environment and Ranking of Models. Journal of Cases on Information Technology, 2019, 21, 1-20.	0.7	4
32	Prioritizing and Optimizing Disaster Recovery Solution using Analytic Network Process and Multi Attribute Utility Theory. International Journal of Information Technology and Decision Making, 2019, 18, 171-207.	2.3	4
33	Modeling two-dimensional technology diffusion process under dynamic adoption rate. Journal of Modelling in Management, 2019, 14, 717-737.	1.1	13
34	Prioritising vulnerabilities using ANP and evaluating their optimal discovery and patch release time. International Journal of Mathematics in Operational Research, 2019, 14, 236.	0.1	2
35	Joint Release and Testing Stop Time Policy with Testing-Effort and Change Point. , 2019, , 209-222.		9
36	Effort-based software release and testing stop time decisions. International Journal of Reliability and Safety, 2019, 13, 179.	0.2	6

#	Article	IF	CITATIONS
37	Diffusion Modeling Framework for Adoption of Competitive Brands. Asset Analytics, 2019, , 307-320.	0.4	Ο
38	Two-Dimensional Vulnerability Patching Model. Asset Analytics, 2019, , 321-331.	0.4	0
39	Studying BHIM App Adoption using Bass Model: An Indian Perspective. International Journal of Mathematical, Engineering and Management Sciences, 2019, 5, 120-135.	0.4	1
40	Integrated dynamic vendor selection and order allocation problem for the time dependent and stochastic data. Benchmarking, 2018, 25, 777-796.	2.9	17
41	Evolutionary Algorithm Based Faults Optimization of Multi-modular Software. Smart Innovation, Systems and Technologies, 2018, , 281-291.	0.5	1
42	Discrete-Time Framework for Determining Optimal Software Release and Patching Time. Springer Proceedings in Business and Economics, 2018, , 129-141.	0.3	3
43	Software Release and Patching Time with Warranty Using Change Point. Springer Proceedings in Business and Economics, 2018, , 369-382.	0.3	5
44	Fixing of Faults and Vulnerabilities via Single Patch. Springer Proceedings in Business and Economics, 2018, , 175-190.	0.3	1
45	A General Framework for Modeling of Multiple-Version Software with Change-Point. Springer Proceedings in Business and Economics, 2018, , 17-32.	0.3	7
46	Modeling Fault Detection Phenomenon in Multiple Sprints for Agile Software Environment. Springer Proceedings in Business and Economics, 2018, , 251-263.	0.3	3
47	Reliability Analysis for Upgraded Software with Updates. Springer Proceedings in Business and Economics, 2018, , 323-333.	0.3	3
48	Bi-Criterion Problem to Determine Optimal Vulnerability Discovery and Patching Time. International Journal of Reliability, Quality and Safety Engineering, 2018, 25, 1850002.	0.4	8
49	Measuring architecture and design efficiency for enterprise applications. International Journal of Industrial and Systems Engineering, 2018, 28, 494.	0.1	0
50	Generalised framework for optimal pre and post release software testing in presence of warranty. International Journal of Procurement Management, 2018, 11, 172.	0.1	2
51	A discrete SRGM for multi-release software system with faults of different severity. International Journal of Operational Research, 2018, 32, 156.	0.1	7
52	A unified approach for optimal release, patching and testing time of a software. International Journal of Mathematics in Operational Research, 2018, 13, 471.	0.1	10
53	When to Start Remanufacturing Using Adopter Categorization. Springer Proceedings in Business and Economics, 2018, , 443-465.	0.3	2
54	Two-Dimensional Framework to Optimize Release Time and Warranty. Springer Proceedings in Business and Economics, 2018, , 383-404.	0.3	1

#	Article	IF	CITATIONS
55	User-dependent vulnerability discovery model and its interdisciplinary nature. Life Cycle Reliability and Safety Engineering, 2017, 6, 23-29.	0.6	15
56	Optimal profit for manufacturers in product remanufacturing diffusion dynamics. Journal of Industrial and Production Engineering, 2017, 34, 568-579.	2.1	6
57	Release and testing stop time of a software using multi-attribute utility theory. Life Cycle Reliability and Safety Engineering, 2017, 6, 47-55.	0.6	16
58	Optimal Reliability Equivalence Factor for Reliability System Improvement Using Memetic Algorithm. International Journal of Reliability, Quality and Safety Engineering, 2017, 24, 1740008.	0.4	2
59	Modeling and measuring attributes influencing DevOps implementation in an enterprise using structural equation modeling. Information and Software Technology, 2017, 92, 75-91.	3.0	57
60	Multi Release Cost Model — A New Perspective. International Journal of Reliability, Quality and Safety Engineering, 2017, 24, 1740007.	0.4	7
61	Two-Dimensional Generalized Framework to Determine Optimal Release and Patching Time of a Software. International Journal of Reliability, Quality and Safety Engineering, 2017, 24, 1740003.	0.4	1
62	Measuring and evaluating data distribution strategies using an integrated approach of fuzzy based MOORA and AHP. Life Cycle Reliability and Safety Engineering, 2017, 6, 37-45.	0.6	11
63	When to Release and Stop Testing of a Software. Journal of the Indian Society for Probability and Statistics, 2017, 18, 19-37.	0.3	20
64	A Multi Release Cost Model in Distributed Environment. International Journal of Reliability, Quality and Safety Engineering, 2017, 24, 1750001.	0.4	11
65	Severity measure of issues creating vulnerabilities in websites using two way assessment technique. , 2017, , .		4
66	Modelling fault detection with change-point in agile software development environment. , 2017, , .		3
67	User based fault detection, vulnerability discovery and patching: An interdisciplinary research. , 2017, ,		0
68	Multi-generation diffusion of technology. , 2017, , .		6
69	On allocation of resources during testing phase incorporating flexible software reliability growth model with testing effort under dynamic environment. International Journal of Operational Research, 2017, 30, 523.	0.1	9
70	User-based multi-upgradation vulnerability discovery model. , 2017, , .		2
71	Effort and coverage dependent vulnerability discovery modeling. , 2017, , .		2
72	Utility based Tool to Assess Overall Effectiveness of HRD Instruments. International Journal of Business Analytics, 2017, 4, 20-36.	0.2	8

#	Article	IF	CITATIONS
73	An innovation diffusion model for consumer durables with three parameters. Journal of Management Analytics, 2016, 3, 240-265.	1.6	18
74	Estimation of the Frank copula model for dependent competing risks in accelerated life testing. International Journal of Systems Assurance Engineering and Management, 2016, 8, 673.	1.5	1
75	Modeling Two-Dimensional Framework for Multi-Upgradations of a Software with Change Point. International Journal of Reliability, Quality and Safety Engineering, 2016, 23, 1640008.	0.4	3
76	Vulnerability Patch Modeling. International Journal of Reliability, Quality and Safety Engineering, 2016, 23, 1640013.	0.4	11
77	Software reliability viz-a-viz product diffusion: Modeling based interdisciplinary research framework. , 2016, , .		0
78	Testing effort based modeling to determine optimal release and patching time of software. International Journal of Systems Assurance Engineering and Management, 2016, 7, 427-434.	1.5	17
79	Two-way assessment of barriers to Lean–Green Manufacturing System: insights from India. International Journal of Systems Assurance Engineering and Management, 2016, 7, 400-407.	1.5	67
80	Multi-criteria intuitionistic fuzzy group decision analysis with TOPSIS method for selecting appropriate cloud solution to manage big data projects. International Journal of Systems Assurance Engineering and Management, 2016, 7, 316-324.	1.5	11
81	Measuring testing efficiency & effectiveness for software upgradation and its impact on CBP. , 2016, , .		3
82	Exploring disaster recovery parameters in an enterprise application. , 2016, , .		4
83	A generalized framework for modelling multi up-gradations of a software with testing effort and change point. , 2016, , .		3
84	Multi release modeling of a software with testing effort and fault reduction factor. , 2016, , .		5
85	Optimal release and patching time of software with warranty. International Journal of Systems Assurance Engineering and Management, 2016, 7, 462-468.	1.5	12
86	Special issue on reliability, infocomm technology and business operations. International Journal of Systems Assurance Engineering and Management, 2016, 7, 399-399.	1.5	1
87	Selecting appropriate cloud solution for managing big data projects using hybrid AHP-entropy based assessment. , 2016, , .		14
88	Assessing optimal patch release time for vulnerable software systems. , 2016, , .		4
89	Modelling and measuring code smells in enterprise applications using TISM and two-way assessment. International Journal of Systems Assurance Engineering and Management, 2016, 7, 332-340.	1.5	26
90	Assessment of environmental factors affecting software development process using ISM & MICMAC analysis. International Journal of Systems Assurance Engineering and Management, 2016, 7, 435-441.	1.5	11

#	Article	IF	CITATIONS
91	Optimization Problems for a Modular Software with Faults of Different Severity. International Journal of Reliability, Quality and Safety Engineering, 2016, 23, 1640004.	0.4	3
92	Strategic Price, Warranty and Profit Maximization Model of a Software Product Using Dynamic Optimization. International Journal of Reliability, Quality and Safety Engineering, 2016, 23, 1650002.	0.4	1
93	Measuring testing efficiency: An alternative approach. , 2015, , .		3
94	Multi-generational innovation diffusion modelling: a two dimensional approach. International Journal of Applied Management Science, 2015, 7, 1.	0.1	8
95	Modelling successive generations for products-in-use and number of products sold in the market. International Journal of Operational Research, 2015, 24, 228.	0.1	9
96	Measuring brand health. , 2015, , .		8
97	Optimal release time determination for multi upgradation SRGM with faults of different severity using genetic algorithm. , 2015, , .		0
98	Vulnerability discovery model for a software system using stochastic differential equation. , 2015, , .		14
99	Generalized discrete time modelfor multi generational technological products. , 2015, , .		2
100	A generalized framework for multi release of a software under Distributed Environment. , 2015, , .		0
101	Prioritization and ranking of ERP testing components. , 2015, , .		1
102	Assessment of quality factors in enterprise application integration. , 2015, , .		4
103	Customer behavior dependent diffusion process & optimal model selection using distance based approach. , 2015, , .		3
104	Release and testing stop time of a software: A new insight. , 2015, , .		13
105	Developing software reliability growth model for multi up gradations with faults of different severity and related release time problem. , 2015, , .		2
106	A comparative study of vulnerability discovery modeling and software reliability growth modeling. , 2015, , .		15
107	A discrete SRGM for multi-release software system with imperfect debugging and related optimal release policy. , 2015, , .		8
108	A software up-gradation model with testing effort and two types of imperfect debugging. , 2015, , .		11

#	Article	IF	CITATIONS
109	Application of multi attribute utility theory in multiple releases of software. International Journal of Systems Assurance Engineering and Management, 2015, 6, 61-70.	1.5	5
110	Release time problem with multiple constraints. International Journal of Systems Assurance Engineering and Management, 2015, 6, 83-91.	1,5	20
111	Multi up-gradation software reliability growth model with learning effect and severity of faults using SDE. International Journal of Systems Assurance Engineering and Management, 2015, 6, 18-25.	1.5	4
112	Fault severity based multi-release SRGM with testing resources. International Journal of Systems Assurance Engineering and Management, 2015, 6, 36-43.	1.5	9
113	PROFIT ESTIMATION FOR A PRODUCT UNDER WARRANTY: AN EVALUATION BASED ON CUSTOMER'S EXPECTATION AND SATISFACTION. International Journal of Reliability, Quality and Safety Engineering, 2014, 21, 1450029.	0.4	6
114	Exploratory study to identify critical success factors penetration in ERP implementations. , 2014, , .		5
115	Measuring software testing efficiency using two-way assessment technique. , 2014, , .		8
116	Optimal strategies for price-warranty decision model of software product with dynamic production cost. , 2014, , .		3
117	Innovation diffusion models incorporating time lag between innovators and imitators adoption. , 2014, , .		3
118	Generalized Innovation Diffusion Modeling & Weighted Criteria Based Ranking. , 2014, , .		15
119	Software release time problem with learning function under fuzzy environment. , 2014, , .		1
120	A unified approach for successive release of a software under two types of imperfect debugging. , 2014, , .		11
121	When to stop testing under warranty using SRGM with change-point. , 2014, , .		3
122	When to stop testing multi upgradations of software based on cost criteria. International Journal of Systems Science: Operations and Logistics, 2014, 1, 84-93.	2.0	6
123	Critical success factor utility based tool for ERP health assessment: a general framework. International Journal of Systems Assurance Engineering and Management, 2014, 5, 133-148.	1.5	29
124	Special issue on reliability and optimization. International Journal of Systems Assurance Engineering and Management, 2014, 5, 119-119.	1,5	0
125	Predicting the complexity of code changes using entropy based measures. International Journal of Systems Assurance Engineering and Management, 2014, 5, 155-164.	1.5	21
126	Release time determination depending on number of test runs using multi attribute utility theory. International Journal of Systems Assurance Engineering and Management, 2014, 5, 186-194.	1.5	10

#	Article	IF	CITATIONS
127	Optimal cost: a criterion to release multiple versions of software. International Journal of Systems Assurance Engineering and Management, 2014, 5, 174-180.	1.5	17
128	Optimal price and testing time of a software under warranty and two types of imperfect debugging. International Journal of Systems Assurance Engineering and Management, 2014, 5, 120-126.	1.5	6
129	A discrete SRGM for multi release software system. International Journal of Industrial and Systems Engineering, 2014, 16, 143.	0.1	15
130	The impact of bugs reported from operational phase on successive software releases. International Journal of Productivity and Quality Management, 2014, 14, 423.	0.1	9
131	Multi up gradation model under distributed environment. , 2014, , .		2
132	Optimal allocation of testing effort during testing and debugging phases: a control theoretic approach. International Journal of Systems Science, 2013, 44, 1639-1650.	3.7	39
133	A Method for Selecting a Model to Estimate the Reliability of a Software Component in a Dynamic System. , 2013, , .		4
134	OPTIMAL PRICE AND RELEASE TIME OF A SOFTWARE UNDER WARRANTY. International Journal of Reliability, Quality and Safety Engineering, 2013, 20, 1340004.	0.4	9
135	SOFTWARE RELEASE TIME BASED ON DIFFERENT MULTI-ATTRIBUTE UTILITY FUNCTIONS. International Journal of Reliability, Quality and Safety Engineering, 2013, 20, 1350012.	0.4	11
136	PREDICTING SOFTWARE RELIABILITY IN A FUZZY FIELD ENVIRONMENT. International Journal of Reliability, Quality and Safety Engineering, 2013, 20, 1340001.	0.4	5
137	Replenishment decisions under two-level credit policy for flexible credit linked demand. International Journal of Operational Research, 2013, 18, 239.	0.1	2
138	Modelling diffusion of successive generations of technology: a general framework. International Journal of Operational Research, 2013, 16, 465.	0.1	16
139	MODELING TWO-DIMENSIONAL SOFTWARE MULTI-UPGRADATION AND RELATED RELEASE PROBLEM (A) Tj ETQ Engineering, 2012, 19, 1250012.	q1 1 0.784 0.4	1314 rgBT /0 17
140	On the development of innovation diffusion model using stochastic differential equation incorporating change in the adoption rate. International Journal of Operational Research, 2012, 14, 472.	0.1	11
141	A unified approach for developing two-dimensional software reliability model. International Journal of Operational Research, 2012, 13, 318.	0.1	6
142	Testing-effort-dependent software reliability growth model for a distributed environment using debugging time lag functions. International Journal of Mathematics in Operational Research, 2012, 4, 18.	0.1	4
143	A unified scheme for developing software reliability growth models using stochastic differential equations. International Journal of Operational Research, 2012, 15, 48.	0.1	10
144	Consumer behaviour-based innovation diffusion modelling using stochastic differential equation incorporating change in adoption rate. International Journal of Technology Marketing, 2012, 7, 346.	0.1	36

#	ARTICLE	IF	CITATIONS
145	Optimal replenishment and credit policy in EOQ model under two-levels of trade credit policy when demand is influenced by credit period. International Journal of Systems Assurance Engineering and Management, 2012, 3, 352-359.	1.5	21
146	A multi-attribute approach for release time and reliability trend analysis of a software. International Journal of Systems Assurance Engineering and Management, 2012, 3, 246-254.	1.5	16
147	Dynamic optimal control model for profit maximization of software product under the influence of promotional effort. Journal of High Technology Management Research, 2012, 23, 122-129.	2.7	15
148	Flexible Discrete Software Reliability Growth Model for Distributed Environment Incorporating Two Types of Imperfect Debugging. , 2012, , .		4
149	Two Dimensional Multi-Release Software Reliability Modeling and Optimal Release Planning. IEEE Transactions on Reliability, 2012, 61, 758-768.	3.5	109
150	Genetic algorithm based multi-objective reliability optimization in interval environment. Computers and Industrial Engineering, 2012, 62, 152-160.	3.4	100
151	A stochastic formulation of successive software releases with faults severity. , 2011, , .		13
152	Optimal allocation of promotional resource for multi-product in segmented market for dynamic potential adopter and repeat purchasing diffusion models. International Journal of Advanced Operations Management, 2011, 3, 257.	0.3	5
153	A Unified Approach for Developing Software Reliability Growth Models in the Presence of Imperfect Debugging and Error Generation. IEEE Transactions on Reliability, 2011, 60, 331-340.	3.5	175
154	Optimal release policy under fuzzy environment. International Journal of Systems Assurance Engineering and Management, 2011, 2, 48-58.	1.5	7
155	Unified framework for developing Two Dimensional software reliability growth models with change point. , 2011, , .		3
156	Allocation policy for testing effort of modular software system under budgetary constraint. Journal of Information and Optimization Sciences, 2011, 32, 315-337.	0.2	1
157	Multi up-gradation software reliability growth model with faults of different severity. , 2011, , .		19
158	Software Reliability Assessment with OR Applications. Springer Series in Reliability Engineering, 2011, , .	0.3	252
159	Fault Tolerant Systems. Springer Series in Reliability Engineering, 2011, , 451-512.	0.3	0
160	Allocation Problems at Unit Level Testing. Springer Series in Reliability Engineering, 2011, , 405-449.	0.3	0
161	Unification of SRGM. Springer Series in Reliability Engineering, 2011, , 215-253.	0.3	0
162	Software Release Time Decision Problems. Springer Series in Reliability Engineering, 2011, , 347-403.	0.3	0

#	Article	IF	CITATIONS
163	Discrete SRGM. Springer Series in Reliability Engineering, 2011, , 313-346.	0.3	0
164	Imperfect Debugging/Testing Efficiency Software Reliability Growth Models. Springer Series in Reliability Engineering, 2011, , 97-130.	0.3	1
165	Software Reliability Growth Models. Springer Series in Reliability Engineering, 2011, , 49-95.	0.3	15
166	Artificial Neural Networks Based SRGM. Springer Series in Reliability Engineering, 2011, , 255-282.	0.3	1
167	Change-Point Models. Springer Series in Reliability Engineering, 2011, , 171-213.	0.3	0
168	SRGM Using SDE. Springer Series in Reliability Engineering, 2011, , 283-312.	0.3	0
169	Software quality assurance using software reliability growth modelling: state of the art. International Journal of Business Information Systems, 2010, 6, 463.	0.2	21
170	Optimising adoption of a single product in multi-segmented market using innovation diffusion model with consumer balking. International Journal of Technology Marketing, 2010, 5, 234.	0.1	7
171	Optimal component selection of COTS based software system under recovery block scheme incorporating execution time. International Journal of Systems Assurance Engineering and Management, 2010, 1, 77-83.	1.5	0
172	Development of software reliability growth model incorporating enhancement of features and related release policy. International Journal of Systems Assurance Engineering and Management, 2010, 1, 52-58.	1.5	2
173	Multi up-gradation software reliability growth model with imperfect debugging. International Journal of Systems Assurance Engineering and Management, 2010, 1, 299-306.	1.5	44
174	Simultaneous allocation of testing time and resources for a modular software. International Journal of Systems Assurance Engineering and Management, 2010, 1, 351-361.	1.5	13
175	STOCHASTIC DIFFERENTIAL EQUATION BASED SRGM FOR ERRORS OF DIFFERENT SEVERITY WITH TESTING-EFFORT. International Journal of Reliability, Quality and Safety Engineering, 2010, 17, 179-197.	0.4	7
176	A reliability growth model for object oriented software developed under concurrent distributed development environment. , 2010, , .		3
177	ON THE DEVELOPMENT OF UNIFIED SCHEME FOR DISCRETE SOFTWARE RELIABILITY GROWTH MODELING. International Journal of Reliability, Quality and Safety Engineering, 2010, 17, 245-260.	0.4	5
178	OPTIMAL COMPONENT SELECTION OF COTS BASED SOFTWARE SYSTEM UNDER CONSENSUS RECOVERY BLOCK SCHEME INCORPORATING EXECUTION TIME. International Journal of Reliability, Quality and Safety Engineering, 2010, 17, 209-222.	0.4	17
179	Measuring reliability growth of software by considering fault dependency, debugging time Lag functions and irregular fluctuation. Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM, 2010, 35, 1-11.	0.5	3
180	Determining adoption pattern with pricing using two-dimensional innovation diffusion model. Journal of High Technology Management Research, 2010, 21, 136-146.	2.7	26

P K KAPUR

#	Article	IF	CITATIONS
181	A generalized reliability growth model for open source software. , 2010, , .		4
182	Measuring Reliability Growth of Open Source Software by Applying Stochastic Differential Equations. , 2010, , .		8
183	A UNIFIED APPROACH FOR DEVELOPING SOFTWARE RELIABILITY GROWTH MODEL USING INFINITE SERVER QUEUING MODEL. International Journal of Reliability, Quality and Safety Engineering, 2010, 17, 401-424.	0.4	14
184	Optimal testing resource allocation for modular software considering imperfect debugging and change point using genetic algorithm. , 2010, , .		3
185	Multi up-gradation software reliability model. , 2010, , .		45
186	Innovation diffusion of successive generations of high technology products. , 2010, , .		10
187	Stochastic Differential Equation-Based Flexible Software Reliability Growth Model. Mathematical Problems in Engineering, 2009, 2009, 1-15.	0.6	28
188	GENERAL FRAMEWORK FOR CHANGE POINT PROBLEM IN SOFTWARE RELIABILITY AND RELATED RELEASE TIME PROBLEM. International Journal of Reliability, Quality and Safety Engineering, 2009, 16, 567-579.	0.4	14
189	OPTIMAL TESTING RESOURCE ALLOCATION FOR MODULAR SOFTWARE CONSIDERING COST, TESTING EFFORT AND RELIABILITY USING GENETIC ALGORITHM. International Journal of Reliability, Quality and Safety Engineering, 2009, 16, 495-508.	0.4	18
190	Optimal advertising control policy for a new product in segmented market. Opsearch, 2009, 46, 225-237.	1.1	15
191	Optimal testing resource allocation during module testing considering cost, testing effort and reliability. Computers and Industrial Engineering, 2009, 57, 1122-1130.	3.4	32
192	Flexible software reliability growth model with testing effort dependent learning process. Applied Mathematical Modelling, 2008, 32, 1298-1307.	2.2	71
193	Software reliability growth model with change-point and effort control using a power function of the testing time. International Journal of Production Research, 2008, 46, 771-787.	4.9	34
194	SOFTWARE RELIABILITY ASSESSMENT USING ARTIFICIAL NEURAL NETWORK BASED FLEXIBLE MODEL INCORPORATING FAULTS OF DIFFERENT COMPLEXITY. International Journal of Reliability, Quality and Safety Engineering, 2008, 15, 113-127.	0.4	16
195	Bass model revisited. Journal of Statistics and Management Systems, 2008, 11, 413-437.	0.3	11
196	Release time decision policy of software employed for the safety of critical system under uncertainty. Opsearch, 2008, 45, 209-224.	1.1	2
197	A Unified Modeling Framework Incorporating Change-Point for Measuring Reliability Growth daring Software Testing. Opsearch, 2008, 45, 317-334.	1.1	6
198	On the Development of Discrete Software Reliability Growth Models. , 2008, , 1239-1255.		5

#	Article	IF	CITATIONS
199	SOFTWARE RELIABILITY GROWTH MODELLING FOR ERRORS OF DIFFERENT SEVERITY USING CHANGE POINT. International Journal of Reliability, Quality and Safety Engineering, 2007, 14, 311-326.	0.4	39
200	On allocation of resources during testing phase of a modular software. International Journal of Systems Science, 2007, 38, 493-499.	3.7	18
201	RELIABILITY ANALYSIS OF PROJECT AND PRODUCT TYPE SOFTWARE IN OPERATIONAL PHASE INCORPORATING THE EFFECT OF FAULT REMOVAL EFFICIENCY. International Journal of Reliability, Quality and Safety Engineering, 2007, 14, 219-240.	0.4	13
202	A General Software Reliability Growth Model with Testing Effort Dependent Learning Process. International Journal of Modelling and Simulation, 2007, 27, 340-346.	2.3	11
203	Reliability growth modeling and optimal release policy under fuzzy environment of an N-version programming system incorporating the effect of fault removal efficiency. International Journal of Automation and Computing, 2007, 4, 369-379.	4.5	12
204	A GENERAL SOFTWARE RELIABILITY GROWTH MODEL WITH TESTING EFFORT DEPENDENT LEARNING PROCESS. International Journal of Modelling and Simulation, 2007, 27, .	2.3	2
205	Flexible Software Reliability Growth Models for Distributed Systems. Opsearch, 2005, 42, 378-398.	1.1	6
206	On Discrete Software Reliability Growth Model & Categorization of Faults. Opsearch, 2005, 42, 340-354.	1.1	3
207	OPTIMAL ALLOCATION OF TESTING RESOURCE FOR A MODULAR SOFTWARE. Asia-Pacific Journal of Operational Research, 2004, 21, 333-354.	0.9	26
208	SOFTWARE RELIABILITY GROWTH AND INNOVATION DIFFUSION MODELS: AN INTERFACE. International Journal of Reliability, Quality and Safety Engineering, 2004, 11, 339-364.	0.4	8
209	A SOFTWARE RELIABILITY GROWTH MODEL WITH TESTING EFFORT DEPENDENT LEARNING FUNCTION FOR DISTRIBUTED SYSTEMS. International Journal of Reliability, Quality and Safety Engineering, 2004, 11, 365-377.	0.4	31
210	Optimal Reliability Allocation Problem for a Modular Software System. Opsearch, 2003, 40, 138-148.	1.1	7
211	Testing Effort Control Through Software Reliability Growth Modelling. International Journal of Modelling and Simulation, 2002, 22, 90-96.	2.3	16
212	A General Discrete Software Reliability Growth Model. International Journal of Modelling and Simulation, 1998, 18, 60-65.	2.3	5
213	Modelling an imperfect debugging phenomenon in software reliability. Microelectronics Reliability, 1996, 36, 645-650.	0.9	29
214	Software reliability growth model with error dependency. Microelectronics Reliability, 1995, 35, 273-278.	0.9	39
215	Bicriterion release policy for exponential software reliability growth model. RAIRO - Operations Research, 1994, 28, 165-180.	1.0	15
216	On a general imperfect debugging software reliability growth model. Microelectronics Reliability, 1994, 34, 1397-1403.	0.9	3

#	Article	IF	CITATIONS
217	Release policies with random software life cycle and penalty cost. Microelectronics Reliability, 1993, 33, 7-12.	0.9	15
218	An exponential SRGM with a bound on the number of failures. Microelectronics Reliability, 1993, 33, 1245-1249.	0.9	6
219	A software reliability growth model for an error-removal phenomenon. Software Engineering Journal, 1992, 7, 291.	0.7	160
220	Optimal release policies for a flexible software reliability growth model. Reliability Engineering and System Safety, 1992, 35, 49-54.	5.1	28
221	Transient solutions of a software reliability model with imperfect debugging and error generation. Microelectronics Reliability, 1992, 32, 475-478.	0.9	8
222	Optimum release policy for an inflection s-shaped software reliability growth model. Microelectronics Reliability, 1991, 31, 39-41.	0.9	12
223	Optimal release policies for software systems with testing effort. International Journal of Systems Science, 1991, 22, 1563-1571.	3.7	41
224	An S-shaped software reliability growth model with two types of errors. Microelectronics Reliability, 1990, 30, 1085-1090.	0.9	25
225	Compound availability measures for a two-unit standby system. Microelectronics Reliability, 1990, 30, 425-429.	0.9	3
226	Optimum maintenance policies maximizing service reliability. International Journal of Systems Science, 1990, 21, 217-224.	3.7	4
227	Optimal sofware release policies for software reliability growth models under imperfect debugging. RAIRO - Operations Research, 1990, 24, 295-305.	1.0	45
228	Cost–reliability optimum release policies for a software system under penalty cost. International Journal of Systems Science, 1989, 20, 2547-2562.	3.7	39
229	Some replacement policies with minimal repairs and repair cost limit. International Journal of Systems Science, 1989, 20, 267-279.	3.7	36
230	Optimal number of minimal repairs before replacement with repair cost limit. Reliability Engineering and System Safety, 1989, 26, 35-46.	5.1	7
231	Optimum inspection policies for a computer system with hidden failure. International Journal of Systems Science, 1987, 18, 601-609.	3.7	3
232	Availability measures for various multi-unit systems. Microelectronics Reliability, 1986, 26, 1089-1097.	0.9	2
233	Generalised availability measures for a multi-unit repairable system with standby failure. Microelectronics Reliability, 1984, 24, 637-646.	0.9	3
234	Generalised availability measures for a two-unit intermittently used repairable system. Microelectronics Reliability, 1984, 24, 29-34.	0.9	5

#	Article	IF	CITATIONS
235	Availability measures for an intermittently used repairable system. Microelectronics Reliability, 1983, 23, 841-844.	0.9	5
236	Interval reliability of a two-unit stand-by redundant system. Microelectronics Reliability, 1983, 23, 167-168.	0.9	5
237	First uptime and disappointment time joint distribution of an intermittently used system. Microelectronics Reliability, 1980, 20, 891-893.	0.9	4
238	Joint Optimum Preventive-Maintenance and Repair-Limit Replacement Policies. IEEE Transactions on Reliability, 1980, R-29, 279-280.	3.5	3
239	Two-unit redundant system with random switchover time and two types of repair. Microelectronics Reliability, 1979, 19, 325-328.	0.9	4
240	A note on repair limit suspension policies for a 2-unit standby redundant system with two phase repairs. Microelectronics Reliability, 1978, 17, 591-592.	0.9	3
241	Intermittently used redundant system. Microelectronics Reliability, 1978, 17, 593-596.	0.9	8
242	Stochastic Behaviour of Some 2-Unit Redundant Systems. IEEE Transactions on Reliability, 1978, R-27, 382-385.	3.5	10
243	Analysis of 2-Unit Standby Redundant Repairable Systems. IEEE Transactions on Reliability, 1978, R-27, 385-388.	3.5	4
244	Correction A 2-Unit Warm-Standby Redundant System with Delay and One Repair Facility. IEEE Transactions on Reliability, 1978, R-27, 388-388.	3.5	0
245	Effect of Standby Redundancy on System Reliability. IEEE Transactions on Reliability, 1976, R-25, 120-121.	3.5	6
246	Reliability Model with 1 or 2 Repair Channels. IEEE Transactions on Reliability, 1975, R-24, 147-148.	3.5	3
247	A 2-Dissimilar-Unit Redundant System With Repair And Preventive Maintenance. IEEE Transactions on Reliability, 1975, R-24, 274-274.	3.5	9
248	A 2-Unit Warm-Standby Redundant System With Delay and One Repair Facility. IEEE Transactions on Reliability, 1975, R-24, 275-275.	3.5	9
249	Intermittent Complex Systems. IEEE Transactions on Reliability, 1975, R-24, 276-277.	3.5	1
250	Correction to a paper by Srivastava, Garg and Govil. Microelectronics Reliability, 1974, 13, 57-58.	0.9	0