Kerik D Cox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1439860/publications.pdf

Version: 2024-02-01

430754 501076 51 939 18 28 citations h-index g-index papers 51 51 51 914 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Interactions Between Delia platura and Erwinia amylovora Associated with Insect-Mediated Transmission of Shoot Blight. PhytoFrontiers, 2021, 1, 62-74.	0.8	5
2	Assessing and Minimizing the Development and Spread of Fire Blight Following Mechanical Thinning and Pruning in Apple Orchards. Plant Disease, 2021, 105, 650-659.	0.7	5
3	Phenotypic Evaluation of Fire Blight Outbreak in the USDA Malus Collection. Agronomy, 2021, 11, 144.	1.3	13
4	Investigating the Distribution of Strains of <i>Erwinia amylovora</i> and Streptomycin Resistance in Apple Orchards in New York Using Clustered Regularly Interspaced Short Palindromic Repeat Profiles: A 6-Year Follow-Up. Plant Disease, 2021, 105, 3554-3563.	0.7	5
5	Field Evaluation of Interactions Between Insects and Erwinia amylovora in a New York Apple Orchard. PhytoFrontiers, 2021, 1, 94-103.	0.8	5
6	Endophytic Bacterial Communities in Apple Leaves Are Minimally Impacted by Streptomycin Use for Fire Blight Management. Phytobiomes Journal, 2021, 5, 350-361.	1.4	0
7	Optimizing the Integration of a Biopesticide (<i>Bacillus subtilis</i> QST 713) with a Single-Site Fungicide (Benzovindiflupyr) to Reduce Reliance on Synthetic Multisite Fungicides (Captan and) Tj ETQq1 1 0.784	43 1.# rgBT	⊺/@verlock 1
8	Examining Spatial Distribution and Spread of Fire Blight in Apple Orchards: Two Case Studies. Plant Health Progress, 2021, 22, 445-449.	0.8	0
9	The Effect of Erwinia amylovora Infection in Apple Saplings and Fruit on the Behavior of Delia platura (Diptera: Anthomyiidae). Environmental Entomology, 2021, 50, 117-125.	0.7	3
10	Optimizing Use of DMI Fungicides for Management of Apple Powdery Mildew Caused by Podosphaera leucotricha in New York State. Plant Disease, 2021, , .	0.7	5
11	Behavioral evidence for contextual olfactoryâ€mediated avoidance of the ubiquitous phytopathogen <i>Botrytis cinerea</i> by <i>Drosophila suzukii</i> lnsect Science, 2020, 27, 771-779.	1.5	11
12	A Genome Resource for Several North American <i>Venturia inaequalis</i> Isolates with Multiple Fungicide Resistance Phenotypes. Phytopathology, 2020, 110, 544-546.	1.1	17
13	Management of Fire Blight Using Pre-bloom Application of Prohexadione-Calcium. Plant Disease, 2020, 104, 1048-1054.	0.7	11
14	Global transcriptomic responses orchestrate difenoconazole resistance in Penicillium spp. causing blue mold of stored apple fruit. BMC Genomics, 2020, 21, 574.	1.2	8
15	The Effects of Succinate Dehydrogenase Inhibitor Fungicide Dose and Mixture on Development of Resistance in <i>Venturia inaequalis</i> Applied and Environmental Microbiology, 2020, 86, .	1.4	14
16	Baseline Sensitivity of <i>Penicillium</i> spp. to Difenoconazole. Plant Disease, 2019, 103, 331-337.	0.7	13
17	Effects of Exposure Time and Biological State on Acquisition and Accumulation of Erwinia amylovora by Drosophila melanogaster. Applied and Environmental Microbiology, 2019, 85, .	1.4	9
18	Plants, microbes, and odorants involved in host plant location by a specialist moth: who's making the message?. Entomologia Experimentalis Et Applicata, 2019, 167, 313-322.	0.7	7

#	Article	IF	CITATIONS
19	Characterization of the <i>VisdhC</i> and <i>VisdhD</i> Genes in <i>Venturia inaequalis</i> and Sensitivity to Fluxapyroxad, Pydiflumetofen, Inpyrfluxam, and Benzovindiflupyr. Plant Disease, 2019, 103, 1092-1100.	0.7	19
20	<i>Paecilomyces niveus:</i> Pathogenicity in the Orchard and Sensitivity to Three Fungicides. Plant Disease, 2019, 103, 125-131.	0.7	3
21	Optimizing disease management in fruit cultivation. Burleigh Dodds Series in Agricultural Science, 2019, , 400-432.	0.1	2
22	Prevalence and Genetic Diversity of Grabloviruses in Free-Living <i>Vitis</i> spp Plant Disease, 2018, 102, 2308-2316.	0.7	20
23	Fire Blight Symptomatic Shoots and the Presence of <i>Erwinia amylovora</i> in Asymptomatic Apple Budwood. Plant Disease, 2017, 101, 186-191.	0.7	8
24	Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) Occurrence, Fungal Associations, and Management Trials in New York Apple Orchards. Journal of Economic Entomology, 2017, 110, 2149-2164.	0.8	31
25	Comparative Programs for Arthropod, Disease and Weed Management in New York Organic Apples. Insects, 2017, 8, 96.	1.0	4
26	Pre- and postharvest fungal apple diseases. Burleigh Dodds Series in Agricultural Science, 2017, , 371-382.	0.1	2
27	Molecular Characterization of the <i>sdhB</i> Gene and Baseline Sensitivity to Penthiopyrad, Fluopyram, and Benzovindiflupyr in <i>Venturia inaequalis</i> Plant Disease, 2016, 100, 1709-1716.	0.7	18
28	Resistance to Increasing Chemical Classes of Fungicides by Virtue of "Selection by Association―in <i>Botrytis cinerea</i> . Phytopathology, 2016, 106, 1513-1520.	1.1	44
29	Overexpression of the <i>CYP51A1</i> Gene and Repeated Elements are Associated with Differential Sensitivity to DMI Fungicides in <i>Venturia inaequalis</i> Phytopathology, 2016, 106, 562-571.	1.1	56
30	Exploring Diversity and Origins of Streptomycin-Resistant <i>Erwinia amylovora</i> Isolates in New York Through CRISPR Spacer Arrays. Plant Disease, 2016, 100, 1307-1313.	0.7	29
31	The Effect of Delayed-Dormant Chemical Treatments on Demethylation Inhibitor (DMI) Sensitivity in a DMI-resistant Population of Venturia inaequalis. Plant Disease, 2015, 99, 1751-1756.	0.7	3
32	Impact of White Pine Blister Rust on Resistant Cultivated <i>Ribes</i> and Neighboring Eastern White Pine in New Hampshire. Plant Disease, 2015, 99, 1374-1382.	0.7	8
33	Prevalence of Myclobutanil Resistance and Difenoconazole Insensitivity in Populations of <i>Venturia inaequalis</i>). Plant Disease, 2015, 99, 1526-1536.	0.7	42
34	Fungicide Resistance in Venturia inaequalis, the Causal Agent of Apple Scab, in the United States., 2015, , 433-447.		15
35	Prevalence and Stability of Qualitative Qol Resistance in Populations of <i>Venturia inaequalis</i> in the Northeastern United States. Plant Disease, 2014, 98, 1122-1130.	0.7	22
36	Heteroplasmy of the <i>cytochrome b</i> Gene in <i>Venturia inaequalis</i> and Its Involvement in Quantitative and Practical Resistance to Trifloxystrobin. Phytopathology, 2014, 104, 945-953.	1.1	30

#	Article	IF	Citations
37	A gypsy-like sequence from Arabidopsis thaliana exhibits enhancer-blocking activity in transgenic plants. Journal of Plant Biochemistry and Biotechnology, 2013, 22, 35-42.	0.9	9
38	The CsSUT1 promoter from Citrus sinensis confers sink-specific expression of a downstream reporter gene in transgenic Arabidopsis. Journal of Plant Biochemistry and Biotechnology, 2012, 21, 167-172.	0.9	2
39	Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators. Plant Cell Reports, 2012, 31, 13-25.	2.8	42
40	Monilinia Species Causing Brown Rot of Peach in China. PLoS ONE, 2011, 6, e24990.	1.1	108
41	The sucrose synthase-1 promoter from Citrus sinensis directs expression of the \hat{l}^2 -glucuronidase reporter gene in phloem tissue and in response to wounding in transgenic plants. Planta, 2011, 234, 623-637.	1.6	21
42	Enhancer–promoter interference and its prevention in transgenic plants. Plant Cell Reports, 2011, 30, 723-731.	2.8	31
43	Analysis of the enhancer-blocking function of the TBS element from Petunia hybrida in transgenic Arabidopsis thaliana and Nicotiana tabacum. Plant Cell Reports, 2011, 30, 2013-2025.	2.8	15
44	Characterization of the <i>cytochrome b</i> (<i>cyt b</i>) gene from <i>Monilinia</i> species causing brown rot of stone and pome fruit and its significance in the development of QoI resistance. Pest Management Science, 2011, 67, 385-396.	1.7	44
45	Characterizing Fenbuconazole and Propiconazole Sensitivity and Prevalence of â€~Mona' in Isolates of <i>Monilinia fructicola</i> from New York. Plant Disease, 2011, 95, 828-834.	0.7	24
46	The Reemergence and Management of Currant Cane Dieback in the Northeastern United States. Plant Disease, 2010, 94, 1283-1289.	0.7	4
47	Both the constitutive Cauliflower Mosaic Virus 35S and tissue-specific AGAMOUS enhancers activate transcription autonomously in Arabidopsis thaliana. Plant Molecular Biology, 2010, 74, 293-305.	2.0	34
48	A Rapid Method to Quantify Fungicide Sensitivity in the Brown Rot Pathogen <i>Monilinia fructicola</i> . Plant Disease, 2009, 93, 328-331.	0.7	40
49	Occurrence and Detection of the DMI Resistance-Associated Genetic Element †Mona†in ⟨i⟩ Monilinia fructicola⟨/i⟩. Plant Disease, 2008, 92, 1099-1103.	0.7	64
50	An Examination of Apple Powdery Mildew and the Biology of Podosphaera leucotricha (Ellis & Everh.) E. S. Salmon from Past to Present. Plant Health Progress, 0, , .	0.8	10
51	PATHMAP (Pathogen And Tree fruit Health MAP): A Smart Phone App and Interactive Dashboard to Record and Map Tree Fruit Diseases, Disorders, and Insect Pests. PhytoFrontiers, 0, , .	0.8	0